41 resultados para microfluidic chip system


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Whilst a multitude of techniques have been employed to study the biology of tumour tissue and its response to chemotherapeutic reagents, most current methodologies do not capture the sophistication of the in vivo environment. Microfluidics however offers the ability to maintain and interrogate primary tissue samples in an environment with biomimetic flow characteristics. In this study head and neck squamous cell carcinoma (HNSCC) tumour biopsies have been used to investigate the performance of a microfluidic device for generating clinically-useful information. The response of fresh and cryogenically-frozen primary HNSCC or metastatic lymph node samples to chemotherapy drugs (cisplatin, 5-flurouracil or docetaxel), alone and in combination, were monitored for both proliferation (water-soluble tetrazolium salt metabolism) and cell death biomarker release (lactate dehydrogenase, LDH) “off-chip”. The frozen tissue showed no significant difference in terms of either proliferation or LDH release in comparison with the matched fresh samples. Administration of all drugs caused cell death, in a dose-response manner, with the combination showing the greatest amount of cytotoxicity particularly at days 8 and 9; correlating well with published clinical data. The system described here offers an innovative method for studying the tumour microenvironment in vitro and, through incorporation of relevant analytical modules, provides the basis of a pre-clinical device that can be used to define personalised treatment regimens.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An integrated system employing anion exchange for the extraction of DNA from biological samples prior to polymerase chain reaction DNA amplification has been developed, based on microfluidic methodology utilising electrokinetic pumping. In this system, the biological samples were added directly to chitosan-coated silica beads to facilitate DNA immobilisation. The purified, pre-concentrated DNA was then eluted using a combination of electro-osmotic flow enhanced with electrophoretic mobility, which enable DNA to be transported by both mechanisms into the DNA amplification chamber. Through optimisation of the DNA elution conditions, average DNA extraction efficiencies of 69.1% were achievable. Subsequent DNA amplification performed on the microfluidic system demonstrated not only the ability to use electrokinetic movement to integrate the two processes on a single device, but also that the quality and quantity of DNA eluted was suitable for downstream analysis. This work offers an attractive real-world to chip interface and a route to simpler Lab-on-a-Chip technology which eliminates the need for moving parts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Valves are one of the key components in microfluidic devices to control the fluid flow. In this paper we introduce a novel manual pin-valve which can operate in both analogue (partially close) and digital (on/off) states. We also demonstrate implementation of this pin-valve in a hydrodynamic flow focusing (HFF) device. © The Royal Society of Chemistry 2014.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a fully automated DNA purification module comprised of a micro-fabricated chip and sequential injection analysis system that is designed for use within autonomous instruments that continuously monitor the environment for the presence of biological threat agents. The chip has an elliptical flow channel containing a bed (3.5 × 3.5 mm) of silica-coated pillars with height, width and center-to-center spacing of 200, 15, and 30 µm, respectively, which provides a relatively large surface area (ca. 3 cm2) for DNA capture in the presence of chaotropic agents. We have characterized the effect of various fluidic parameters on extraction performance, including sample input volume, capture flow rate, and elution volume. The flow-through design made the pillar chip completely reusable; carryover was eliminated by flushing lines with sodium hypochlorite and deionized water between assays. A mass balance was conducted to determine the fate of input DNA not recovered in the eluent. The device was capable of purifying and recovering Bacillus anthracis genomic DNA (input masses from 0.32 to 320 pg) from spiked environmental aerosol samples, for subsequent analysis using polymerase chain reaction-based assays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrated optical detection is considered to be an important operation in lab-on-a-chips. This paper presents an optical fiber-based micro-sensor that is capable of detecting food substance particles in a lab-on-a-chip. The system consists of a microcontroller and associated circuitry, a laser emitter, a laser receiver, fiber optic cables, a microfluidics chip, and the food substance samples to be tested. When the particles flow through the microfluidic channel in the chip, the receiver’s output voltage varies due to the particles blocking the passage of the laser ray. The changes in the collected signals are analyzed to count the number of particles. Experiments are conducted on several food substance samples including talcum powder, ground ginger, and soy sauce. The experimental results are presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new versatile computer controlled electrochemlcal/ESR data acquisition system has been developed for the Investigation of short-lived radicals with life-times of 20 milliseconds and greater, Different computer programs have been developed to monitor the decay of radicals; over hours or minutes, seconds or milliseconds. Signal averaging and Fourier smoothing is employed in order to improve the signal to noise ratio. Two microcomputers are used to control the system, one home-made computer containing the M6800 chip which controls the magnetic field, and an IBM PC XT which controls the electrochemistry and the data acquisition. The computer programs are written in Fortran and C, and call machine language subroutines, The system functions by having the radical generated by an electrochemical pulse: after or during the pulse the ESR data are collected. Decaying radicals which have half-lives of seconds or greater have their spectra collected in the magnetic field domain, which can be swept as fast as 200 Gauss per second. The decay of the radicals in the millisecond region is monitored by time-resolved ESR: a technique in which data is collected in both the time domain and in the magnetic field domain. Previously, time-resolved ESR has been used (without field modulation) to investigate ultra-short-lived species with life-times in the region of only a few microseconds. The application of the data acquisition system to chemical systems is illustrated. This is the first time a computer controlled system whereby the radical is generated by electrochemical means and subsequently the ESR data collected, has been developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first continuous flow micro PCR introduced in 1998 has attracted considerable attention for the past several years because of its ability to amplify DNA at much faster rate than the conventional PCR and micro chamber PCR method. The amplification is obtained by moving the sample through 3 different fixed temperature zones. In this paper, the thermal behavior of a continuous flow PCR chip is studied using commercially available finite element software. We study the temperature uniformity and temperature gradient on the chip’s top surface, the cover plate and the interface of the two layers. The material for the chip body and cover plate is glass. The duration for the PCR chip to achieve equilibrium temperature is also studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Miniaturization is being increasingly applied to biological and chemical analysis processes. Lab-on-a-chip systems are direct creation of the advancement in the miniaturization of these processes. They offer a host of exciting applications in several areas including clinical diagnostics, food and environmental analysis, and drug discovery and delivery studies. This paper reviews lab-on-a-chip systems from their components perspective. It provides a categorization of the standard functional components found in lab-on-a-chip devices together with an overview of the latest trends and developments related to lab-on-a-chip technologies and their application in nanobiotechnology. The functional components include: injector, transporter, preparator, mixer, reactor, separator, detector, controller, and power supply. The components are represented by appropriate symbols allowing designers to present their lab-on-a-chip products in a standard manner. Definition and role of each functional component are included and complemented with examples of existing work. Through the approach presented in this paper, it is hoped that modularity and technology transfer in lab-on-a-chip systems can be further facilitated and their application in nanobiotechnology be expanded.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the separation of polystyrene microparticles suspended in deionized (DI) water according to their dimensions using a dielectrophoretic (DEP) system. The DEP system utilizes curved microelectrodes integrated into a microfluidic system. Microparticles of 1, 6, and 15 μm are applied to the system and their response to the DEP field is studied at different frequencies of 100, 200, and 20 MHz. The microelectrodes act as a DEP barrier for 15 μm particles and retain them at all frequencies whereas the response of 1 and 6 μm particles depend strongly on the applied frequency. At 100 kHz, both particles are trapped by the microelectrodes. However, at 200 kHz, the 1 μm particles are trapped by the microelectrodes while the 6 μm particles are pushed toward the sidewalls. Finally, at 20 MHz, both particles are pushed toward the sidewalls. The experiments show the tunable performance of the system to sort the microparticles of various dimensions in microfluidic systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A microfluidic dielectrophoresis platform consisting of curved microelectrodes was developed and integrated with a Raman spectroscopy system. The electrodes were patterned on a quartz substrate, which has insignificant Raman response, and integrated with a microfluidic channel that was imprinted in poly-dimethylsiloxane (PDMS). We will show that this novel integrated system can be efficiently used for the determination of suspended particle types and the direct mapping of their spatial concentrations. We will also illustrate the system's unique advantages over conventional optical systems. Nanoparticles of tungsten trioxide (WO3) and polystyrene were used in the investigations, as they are Raman active and can be homogeneously suspended in water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dielectrophoresis (DEP) utilizing a curved microelectrode pattern was developed and integrated with a Raman spectroscopy system. The electrodes were patterned on a Raman transparent quartz substrate, and integrated with a microfluidic channel in poly-dimethylsiloxane (PDMS). This integrated system can be efficiently used for the determination of suspended particles type and the direct mapping of their spatial concentrations. It will be demonstrated that the integration of Raman mapping with dielectrophoretically controlled WO3 particles can be used for studying suspended particles in situ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dielectrophoresis, the induced motion of polarisable particles in non-homogenous electric field, has been proven as a versatile mechanism to transport, immobilise, sort and characterise micro/nano scale particle in microfluidic platforms. The performance of dielectrophoretic (DEP) systems depend on two parameters: the configuration of microelectrodes designed to produce the DEP force and the operating strategies devised to employ this force in such processes. This work summarises the unique features of curved microelectrodes for the DEP manipulation of target particles in microfluidic systems. The curved microelectrodes demonstrate exceptional capabilities including (i) creating strong electric fields over a large portion of their structure, (ii) minimising electro-thermal vortices and undesired disturbances at their tips, (iii) covering the entire width of the microchannel influencing all passing particles, and (iv) providing a large trapping area at their entrance region, as evidenced by extensive numerical and experimental analyses. These microelectrodes have been successfully applied for a variety of engineering and biomedical applications including (i) sorting and trapping model polystyrene particles based on their dimensions, (ii) patterning carbon nanotubes to trap low-conductive particles, (iii) sorting live and dead cells based on their dielectric properties, (iv) real-time analysis of drug-induced cell death, and (v) interfacing tumour cells with environmental scanning electron microscopy to study their morphological properties. The DEP systems based on curved microelectrodes have a great potential to be integrated with the future lab-on-a-chip systems.