55 resultados para melt extrusion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research investigates the retention of essential amino acid profiles of products during the extrusion of proteins and reducing sugars. Animal proteins (egg and milk protein at 10 and 30% levels) and reducing sugars (fructose and galactose at 0, 2, and 8% levels), with pregelatinized wheat flour, were extruded at 110 and 125 °C product temperatures and feed moistures of 19 and 23.5% for egg protein and 13.75 and 16% for milk protein. The nutritional property analyzed was essential amino acid retention, and sugar retention was also considered to understand the relationship of sugars with retention of amino acids. Lysine showed the lowest retention (up to 40%) of all the essential amino acids. Retention of other essential amino acids varied from 80 to 100% in most situations. Apart from lysine,  tryptophan, threonine, and methionine were found to be significantly changed (P < 0.05) with processing conditions. Increased protein and sugar levels resulted in a significant degradation of lysine. Greater lysine retention was found at a lower temperature and higher feed moisture. Results of sugar retention also showed similar patterns. The products made from fructose had greater lysine retention than products made from galactose with any type of protein. The outcomes of this research suggested that the combination of milk protein and fructose at a lower temperature and higher feed moisture is most favorable for developing high-protein extruded products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extrusion cooking, as a multi-step, multi-functional and thermal/mechanical process, has permitted a large number of food applications. Effects of extrusion cooking on nutritional quality are ambiguous. Beneficial effects include destruction of antinutritional factors, gelatinisation of starch, increased soluble dietary fibre and reduction of lipid oxidation. On the other hand, Maillard reactions between protein and sugars reduce the nutritional value of the protein, depending on the raw material types, their composition and process conditions. Heat-labile vitamins may be lost to varying extents. Changes in proteins and amino acid profile, carbohydrates, dietary fibre, vitamins, mineral content and some non-nutrient healthful components of food may be either beneficial or deleterious. The present paper reviews the mechanisms underlying these changes, as well as the influence of process variables and feed characteristics. Mild extrusion conditions (high moisture content, low residence time, low temperature) improve the nutritional quality, while high extrusion temperatures (200 °C), low moisture contents (<15%) and/or improper formulation (e.g. presence of high-reactive sugars) can impair nutritional quality adversely. To obtain a nutritionally balanced extruded product, careful control of process parameters is essential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium alloys are generally found to be slower to extrude than aluminum alloys; however, limited quantitative comparisons of the actual operating windows have been published. In this work, the extrusion limits are determined for a series of commercial magnesium alloys (M1, ZM21, AZ31, AZ61, and ZK60). These are compared with the limits established for aluminum alloy AA6063. The maximum extrusion speed of alloy M1 is shown to be similar to AA6063. Alloys ZM21, AZ31, ZK60, and AZ61 exhibit maximum extrusion speeds 44, 18, 4, and 3 pct, respectively, of the maximum measured for AA6063. For AZ31, the maximum extrusion speed is increased by 22 pct after homogenization and by 64 pct for repeat extrusions. The variation in the extrusion limits with changing alloy content is rationalized in terms of differences in the hot working flow stress and solidus temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation of the application of a multi scale CAFE model to prediction of the strain localization phenomena in industrial processes, such as extrusion, is presented in this work. Extrusion involves the formation of a strong strain localization zone, which influences the final product microstructure and may lead to a coarse grain layer close to the surface. Modelling of the shape of this zone and prediction of the strain magnitude will allow computer aided design of the extrusion process and optimisation of the technological parameters with respect to the microstructure and properties of the products. Thus, the particular objective of this work is comparison of the FE and CAFE predictions of strain localization in the shear zone area in extrusion. Advantages and disadvantages of the developed CAFE model are also discussed on the basis of the simulation results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The maximum speed at which magnesium can be extruded is considerably slower than that of many common aluminium extrusion alloys. This affects both the economies of production and the final mechanical behaviour. The present work quantifies the limiting extrusion speeds and ratios of magnesium alloy AZ31 as a function of billet temperature. This is done by combining hot compression test results, FE simulations and extrusion trials. Hot working stress–strain curves displayed a distinct dynamic recrystallisation peak. These data were used as a “look-up” table for the FE simulations in which the cracking limit was assumed to occur when the surface temperature reaches the incipient melting point. The maximum extrusion ratio predicted using FE analysis dropped from 90 to 40 when the extrusion ram speed was raised from 5 to 50 mm/s. The predicted limits agree well with the occurrence of cracking in both a laboratory and a commercial extrusion trial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consumption of wrought magnesium products wax reduced by half between 1971 and the 1990s. To increase the use of wrought magnesium, several challenges must be overcome: its formability at room temperature is lower than steel or aluminum; its productivity is lower than steel or aluminum; and extruded magnesium exhibits a marked anisotropy of yield when comparing tension and compression. This article describes research on the rapid evaluation of the extrusion behavior of wrought magnesium alloys. The work aims to establish a methodology for rapid prototyping of alloys and to assess the effects of aluminum on the behavior of AZ-series magnesium alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the current work, constitutive models are developed to describe the cyclic hardening and softening led by the strain path chaneg.  The contribution of deformation conditions such as drawing and extrusion speed, cyclic rotating angle on the drawing and extrusion force will be investigated.  The development of such constitutive models will provide insight into the optimization of operation conditions to explore the potential of industrial applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi scale CAFE model for the prediction of initiation and propagation of the micro shear bands and shear bands in metallic materials subjected to plastic deformation is presented. The CAFE approach is the combination of the Cellular Automata (CA) and the Finite Element (FE) methods. The application of the developed CAFE model to analyze material flow during extrusion is the objective of the present work. The proposed CAFE approach is applied in this work to simulation of the extrusion with flat face and convex dies and to investigate differences in the material flow. The initial FE meshes with the set of the CA point are generated for the numerical tests and the results of the metal flow predicted by the CAFE method are presented in the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The machined chips of 5083 Al alloy were recycled by hot extrusion at 723 K with an extrusion ratio of 44:1 in air. Corrosion and mechanical properties of the recycled specimens have been compared with those of a virgin extrusion which was processed from the ingot block. As a result of salt immersion tests, mass loss of the recycled specimen was not less than twice of that of the virgin extrusion. The deterioration in corrosion properties for the recycled specimen was attributed to the excessive contamination of Fe which promoted galvanic corrosion. As a result of tensile tests, the recycled specimen exhibited a good combination of high strength and high elongation to failure at room temperature. The excellent mechanical properties for the recycled specimen were attributed to the refined microstructure. However, the elongation to failure of the recycled specimen at elevated temperatures more than 573 K was lower than that of the virgin extrusion. The contamination of oxide particles is likely to be responsible for the lower elongation in the solid recycled specimen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extrusion behavior of Zr41.2Ti13.8Cu12.5Ni10Be22.5 metallic glasses in the supercooled liquid region was investigated. Good extrusion formability was observed under low strain rates at temperatures higher than 395 °C. The metallic glasses were fully extruded without crystallization and failure within the range of T=395–415 °C under strain rates from 5×10−3 s−1 to 5×10−2 s−1, and the deformation behavior of the metallic glasses during the extrusion was found to be in a Newtonian viscous flow mode by a strain rate sensitivity of 1.0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental and theoretical investigations of compression and extrusion of metals with steadily or cyclically rotating dies were carried out. Reasonably simple models were produced by classical plasticity theory and analytical equations were developed to establish a theoretical basis for the associated phenomena. Analytical solutions agreed well with the experimental results.