25 resultados para low-temperature epitaxy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In-situ neutron diffraction was employed to monitor the evolution of nano-bainitic ferrite during low temperature isothermal heat treatment of austenite. The first 10 peaks (austenite, γ and ferrite, α) were monitored during austenization, homogenization, rapid cooling and isothermal holding at 573 K. Changes in the α-110 and γ-111 peaks were analysed to determine the volume fraction changes and hence the kinetics of the phase transformation. Asymmetry and broadening in the α-200 and γ-200 peaks were quantified to lattice parameter changes due to carbon redistribution as well as the effects of size and dislocation density. Atom Probe Tomography was used to confirm that, despite the presence of 1.5 mass % Si, carbide formation was evident. This carbide formation is the cause of poor ductility, which is lower than expected in such steels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Equal channel angular extrusion (ECAE), with simultaneous application of back pressure, has been applied to the consolidation of 10 mm diameter billets of pre-alloyed, hydride-dehydride Ti-6Al-4V powder at temperatures ≤400 °C. The upper limit to processing temperature was chosen to minimise the potential for contamination with gaseous constituents potentially harmful to properties of consolidated product. It has been demonstrated that the application of ECAE with imposed hydrostatic pressure permits consolidation to in excess of 96% relative density at temperatures in the range 100-400 °C, and in excess of 98% at 400 °C with applied back pressure ≥175 MPa. ECAE compaction at 20 °C (back pressure = 262 MPa) produced billet with 95.6% relative density, but minimal green strength. At an extrusion temperature of 400 °C, the relative density increased to 98.3%, for similar processing conditions, and the green strength increased to a maximum 750 MPa. The relative density of compacts produced at 400 °C increased from 96.8 to 98.6% with increase in applied back pressure from 20 to 480 MPa, while Vickers hardness increased from 360 to 412 HV. The key to the effective low-temperature compaction achieved is the severe shear deformation experienced during ECAE, combined with the superimposed hydrostatic pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of oxidative stabilization and carbonization processes on the structure, mass and mechanical properties of polyacrylonitrile (PAN) precursor fibers was analyzed. A gradual densification of the fibers occurring from mass loss, decrease in fiber diameter and increase in density were observed after stabilization at a maximum temperature of 255 °C and carbonization at a maximum temperature of 800 °C. The tensile strength and modulus of the fibers were found to decrease after stabilization but then increased after low temperature carbonization. The thermal processing of the precursor fibers affected their mode of failure after tensile loading, changing from a ductile type of failure to a brittle type. The type of failure correlated well with the crystal structure changes in the fibers. Whilst the PAN precursor fiber started to exotherm above 225 °C in air, no prominent exothermic reaction was measured in the carbonized fibers in air up to 430 °C. The aromatization index of stabilized fiber was calculated to be ∼66%, and that of carbonized fiber was ∼99%. FTIR studies indicated that the variation in the chemical structure of the fibers with the stabilization of the fibers. Radial heterogeneity in the stabilized fibers was observed however it was not promoted to the carbonized fibers. Finally, a method to calculate mass retention of PAN precursor fiber after heat treatment was developed, and the calculated percentage mass retained of the precursor fiber after oxidation and carbonization were found to be 81% and 51%, respectively. . This study proposes an effective method to calculate the percentage of mass retained by precursor fibers after stabilization and low temperature carbonization to provide a model for evaluating carbon fiber yield from a given amount of fibers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-temperature active-screen plasma nitriding is an effective surface engineering technology to improve the wear and corrosion resistance of austenitic stainless steel through the formation of expanded austenite. The material sputtered from the active screen and redeposited on the specimens has been suggested to play an important role in the nitriding mechanism involved. This paper reports a patterned deposition layer, which is in correlation with the grain orientation of polycrystalline specimens. This has provided new insights into the nitriding mechanism. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low temperature plasma carburising (LTPC) has been increasingly accepted as a hardening process for austenitic stainless steels because it produces a good combination of tribological and corrosion properties. The hardening mechanism is based on the supersaturation of the austenitic structure with carbon, which greatly hardens the material, significantly expands the fcc unit cell, produces high levels of compressive residual stresses and, ultimately, leads to the occurrence of deformation bands and rotation of the crystal lattice. The microstructural changes introduced during plasma carburising have a significant impact on the mechanical, tribological and corrosion performance and, for this reason, the microstructure of expanded austenite or S-phase has been extensively studied. However, modern surface characterisation techniques could provide new insights into the formation mechanism of S-phase layers. In this work, backscattered electron diffraction and atomic force microscopy were used to characterise the surface layers of expanded austenite produced by LTPC in an active screen furnace. Based on the experimental results, the plastic deformation, its dependence on crystallographic orientation, the evolution of grain boundaries, and their effects on mechanical, tribological and corrosion properties are discussed. © 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A number of novel organic ionic compounds based on the pyrrolidinium cation are described which have been found to be ion conductors in their solid states around room temperature. The properties of the compounds are consistent with their exhibiting plastic crystal phases. In order to understand some of the molecular origins of the plastic crystal behaviour and the ion conductivity that it promotes, a number of related compounds based on the imidazolium and ammonium cations are also described which have structural elements in common with the pyrrolidinium cation, but which do not show the plastic behaviour. It is found therefore that the nature of the cation is quite critical to the development of this behaviour. The alkyl methyl pyrrolidinium cation is found to produce plastic crystal phases when the alkyl chains are short, thereby preserving the ability of the cation to rotate with minimal steric hindrance. The ammonium and imidazolium cations of comparable size and structure are less able to produce these plastic phases, in many cases because the low temperature phase proceeds to melt rather than forming a stable rotator phase.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The low cycle fatigue (LCF) behaviour of several commercially-produced multiphase steels was studied; including dual-phase (DP) and transformation induced plasticity (TRIP). In addition, a novel TRIP980 hybrid microstructure was examined that consisted of coarse ferrite grains along with low temperature bainite regions interspersed with retained austenite. Fully reversed strain controlled fatigue tests were conducted on the different steels to determine the cyclic stress response and strain to failure. The effects of the cyclic deformation on the microstructures were analysed using electron backscattered diffraction (EBSD) and X-ray diffraction (XRD). Results showed that the initial cyclic hardening behaviour and low cyclic softening ratio observed in the TRIP steels was not necessarily due to austenite to martensite transformation. Differences between the austenite transformation behaviour of the conventional and novel hybrid TRIP microstructures was related to the different surrounding phases and the size of the retained austenite.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we present H2 gas sensors based on hollow and filled, well-aligned electrospun SnO2 nanofibers, operating at a low temperature of 150 C. SnO2 nanofibers with diameters ranging from 80 to 400 nm have been successfully synthesized in which the diameter of the nanofibers can be controlled by adjusting the concentration of polyacrylonitrile in the solution for electrospinning. The presence of this polymer results in the formation of granular walls for the nanofibers. We discussed the correlation between nanofibers morphology, structure, oxygen vacancy contents and the gas sensing performances. X-ray photoelectron spectroscopy analysis revealed that the granular hollow SnO2 nanofibers, which show the highest responses, contain a significant number of oxygen vacancies, which are favorable for gas sensor operating at low temperatures. © 2014 American Chemical Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Climate change is predicted to affect many species by reducing range, habitat suitability and breeding success. Cavity-nesting species, already threatened by deforestation and declining natural hollows, may be particularly at risk because they are limited in nest-site location, and climatic alterations may further reduce usability of natural cavities. It is therefore essential to determine how cavity-users may be affected. We recorded internal nest box temperatures and modelled the relationships of four temperature parameters (relating to mean temperature, variability in temperature, low temperature extremes and high temperature extremes) with breeding success and nestling growth in an Australian cavity-nesting parrot, the Crimson Rosella (Platycercus elegans). We found that less extreme low temperatures resulted in heavier nestlings; however, higher mean temperatures tended to result in lighter nestlings. Greater temperature variability tended to reduce fledging success; however, no temperature variables had a clear effect on clutch size or hatching success. Our findings indicate that there may be a complex relationship between nestling growth and temperature, and although less extreme cold temperatures may benefit nestlings, continued increases in mean temperature and variability may have negative consequences.