20 resultados para liver disease


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type 2 diabetes mellitus is a metabolic disease characterised by defects in insulin secretion and insulin action and disturbances in carbohydrate, fat and protein metabolism. Hepatic insulin resistance contributes to hyperglycemia and also leads to disturbances in fat metabolism in type 2 diabetes. Psammomys obesus is a unique poly genie animal model of type 2 diabetes and obesity, ideally suited for studies examining physiological and genetic aspects of these diseases. To identify metabolic abnormalities potentially contributing to the obesity and diabetes phenotype in P. obesus, indirect calorimetry was used to characterise whole body energy expenditure and substrate utilisation. Lean-NGT, obese-IGT and obese-diabetic animals were examined in fed and fasted states and following 14 days of dietary energy restriction. Energy expenditure and fat oxidation were elevated in the obese-IGT and obese-diabetic groups in proportion to body weight. Glucose oxidation was not different between groups. Obese-diabetic P. obesus displayed elevated nocturnal blood glucose levels and fat oxidation. Following 14 days of dietary energy restriction, body weight was reduced and plasma insulin and blood glucose levels were normalised in all groups. Glucose oxidation was reduced and fat oxidation was increased. After 24 hours of fasting, plasma insulin and blood glucose levels were normalised in all groups. Energy expenditure and glucose oxidation were greatly reduced and fat oxidation was increased. Following either dietary energy restriction or fasting, energy expenditure, glucose oxidation and fat oxidation were not different between groups of P. obesus. Energy expenditure and whole body substrate utilisation in P. obesus was similar to that seen in humans. P. obesus responded normally to short term fasting and dietary energy restriction. Elevated nocturnal fat oxidation rates and plasma glucose levels in obese-diabetic P. obesus may be an important factor in the pathogenesis of obesity and type 2 diabetes in these animals. These studies have further validated P. obesus as an ideal animal model of type 2 diabetes and obesity. It was hypothesised that many genes in the liver of P. obesus involved in glucose and fat metabolism would be differentially expressed between lean-NGT and obese-diabetic animals. These genes may represent significant factors in the pathophysiology of type 2 diabetes. Two gene discovery experiments were conducted using suppression subtractive hybridisation (SSH) to enrich a cDNA library for differentially expressed genes. Experiment 1 used cDNA dot blots to screen 576 clones with cDNA derived from lean-NGT and obese-diabetic animals. 6 clones were identified as overexpressed in lean-NGT animals and 6 were overexpressed in obese-diabetic animals. These 12 clones were sequenced and SYBR-Green PCR was used to confirm differential gene expression. 4 genes were overexpressed (≥1.5 fold) in lean-NGT animals and 4 genes were overexpressed (≥1.5 fold) in obese-diabetic animals. To explore the physiological role of these genes, hepatic gene expression was examined in several physiological conditions. One gene, encoding thyroxine binding globulin (TBG), was confirmed as overexpressed in lean-NGT P. obesus with ad libitum access to food, relative to both obese-IGT and obese-diabetic animals. TBG expression decreased with fasting in all animals. Fasting TBG expression remained greater in lean-NGT animals than obese-IGT and obese-diabetic animals. TBG expression was not significantly affected by dietary energy restriction. TBG is involved in thyroid metabolism and is potentially involved in the regulation of energy expenditure. Fasting increased hepatic site 1 protease (SIP) expression in lean-NGT animals but was not significantly affected in obese-IGT and obese-diabetic animals. SIP expression was not significantly affected by dietary energy restriction. SIP is involved in the proteolytic processing of steroid response element binding proteins (SREBP). SREBPs are insulin responsive and are known to be involved in lipid metabolism. Gene expression studies found TBG and SIP were associated with obesity and diabetes. Future research will determine whether TBG and SIP are important in the pathogenesis of these diseases. Experiment 2 used SSH and cDNA microarray to screen 8064 clones. 223 clones were identified as overexpressed in lean-NGT P. obesus and 274 clones were overexpressed in obese-diabetic P. obesus (p ≤0.05). The 9 most significantly differentially expressed clones identified from the microarray screen were sequenced (p ≤0.01). 7 novel genes were identified as well as; sulfotransferase related protein and albumin. These 2 genes have not previously been associated with either type 2 diabetes or obesity. It is unclear why hepatic expression of these genes may differ between lean-NGT and obese-diabetic groups of P. obesus. Subsequent studies will explore the potential role of these novel and known genes in the pathophysiology of type 2 diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Defects in fat metabolism are central to the aetiology and pathogenesis of obesity and type II diabetes. The liver plays a central role in these disease states via its regulation of glucose and fat metabolism. In addition, accumulation of fat within the liver has been associated with changes in key pathways of carbohydrate and fat metabolism. However a number of questions remain. It is hypothesised that fat accumulation within the liver is a primary defect in the aetiology and pathogenesis of obesity and type II diabetes. Fat accumulating in the liver is the result of changes in the gene expression of key enzymes and proteins involved with fat uptake, fat transport, fat oxidation, fat re-esterification or storage and export of fat from the liver and these changes are regulated by key lipid responsive transcription factors. To study these questions Psammomys obesus was utilised. This polygenic rodent model of obesity and type II diabetes develops obesity and diabetes in a similar pattern to susceptible human populations. In addition dietary and environmental changes to Psammomys obesus were employed to create different states of energy balance, which allowed the regulation of liver fat gene expression to be examined. These investigations include: 1) Measurement of fat accumulation and fatty acid binding proteins in lean, obese and diabetic Psammomys obesus. 2) Characterisation of hepatic lipid enzymes, transport protein and lipid responsive transcription factor gene expression in lean, obese and diabetic Paammomys obesus. 3) The effect of acute and chronic energy restriction on hepatic lipid metabolism in Psammomys obesus. 4) The effect of sucrose feeding on the development of obesity and type II diabetes in Psammomys obesus. 5) The effect of nicotine treatment in lean and obese Psammomys obesus, 6) The effect of high dose leptin administration on hepatic fat metabolism in Psammomys obesus. The results of these studies demonstrated that fat accumulation within the liver was not a primary defect in the aetiology and pathogenesis of obesity and type II diabetes. Fat accumulating in the liver was not the result of changes in the gene expression of key enzymes and proteins involved in hepatic fat metabolism. However changes in the mRNA level of the transcription factors PPAR∝ and SREBP-1C was associated with the development of diabetes and the gene expression of these two transcription factors was associated with changes in diabetic status.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Histopathological scoring of disease stage uses descriptive categories without measuring the amount of fibrosis. Collagen, the major component of fibrous tissue, can be quantified by computer-assisted digital image analysis (DIA) using histological sections. We determined relationships between DIA, Ishak stage, and hepatic venous pressure gradient (HVPG) reflecting severity of fibrosis. One hundred fifteen patients with hepatitis C virus (HCV) who had undergone transplantation had 250 consecutive transjugular liver biopsies combined with HVPG (median length, 22 mm; median total portal tracts, 12), evaluated using the Ishak system and stained with Sirus red for DIA. Liver collagen was expressed as collagen proportionate area (CPA). Median CPA was 6% (0.2-45), correlating with Ishak stage (stage 6 range, 13%-45%), and with HVPG (r = 0.62; P < 0.001). Median CPA was 4.1% when HVPG was less than 6 mm Hg and 13.8% when HVPG was 6 mm Hg or more (P < 0.0001) and 6% when HVPG was less than 10 mm Hg and 17.3% when HVPG was 10 mm Hg or higher (P < 0.0001). Only CPA, not Ishak stage/grade, was independently associated by logistic regression, with HVPG of 6 mm Hg or more [odds ratio, 1.206; 95% confidence interval (CI), 1.094-1.331; P < 0.001], or HVPG of 10 mm Hg or more (odds ratio, 1.105; 95% CI, 1.026-1.191; P = 0.009). CPA increased by 50% (3.6%) compared with 20% in HVPG (1 mm Hg) in 38 patients with repeated biopsies. Conclusion: CPA assessed by DIA correlated with Ishak stage scores and HVPG measured contemporaneously. CPA was a better histological correlate with HVPG than Ishak stage, had a greater numerical change when HVPG was low, and resulted in further quantitation of fibrosis in cirrhosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder, with variable clinical manifestations and unpredictable course, associated with an increased incidence of various tumours. Plexiform neurofibromas are hallmark lesions of NF1; they are slow-growing tumours, which account for substantial morbidity, including disfigurement and functional impairment, and may even be life-threatening. Neuroendocrine tumours (NETs), a rare diverse group of neoplasms, are occasionally associated with neurofibromatosis. Pancreatic NETs are tumours with an incidence of less than 1/100 000 population/year and complex patterns of behaviour, which often need complicated strategies for optimal management. We present the case of a young adult with NF1, having a unique concurrence of plexiform neurofibroma involving the liver with an ampullary NET, and we discuss step by step the management in a specialist centre.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a strong inverse relationship between a females own birth weight and her subsequent risk for gestational diabetes with increased risk of developing diabetes later in life. We have shown that growth restricted females develop loss of glucose tolerance during late pregnancy with normal pancreatic function. 


The aim of this study was to determine whether growth restricted females develop long-term impairment of metabolic control after an adverse pregnancy adaptation. Uteroplacental insufficiency was induced by bilateral uterine vessel ligation (Restricted) or sham surgery (Control) in late pregnancy (E18) in F0 female rats. F1 Control and Restricted female offspring were mated with normal males and allowed to deliver (termed Ex-Pregnant). Age-matched Control and Restricted Virgins were also studied and glucose tolerance and insulin secretion were determined. Pancreatic morphology and hepatic glycogen and triacylglycerol content were quantified respectively.

Restricted females were born lighter than Control and remained lighter at all time points studied (p<0.05). Glucose tolerance, first phase insulin secretion and liver glycogen and triacylglycerol content were not different across groups, with no changes in β-cell mass. Second phase insulin secretion was reduced in Restricted Virgins (-34%, p<0.05) compared to Control Virgins, suggestive of enhanced peripheral insulin sensitivity but this was lost after pregnancy. Growth restriction was associated with enhanced basal hepatic insulin sensitivity, which may provide compensatory benefits to prevent adverse metabolic outcomes often associated with being born small. A prior pregnancy was associated with reduced hepatic insulin sensitivity with effects more pronounced in Controls than Restricted.

Our data suggests that pregnancy ameliorates the enhanced peripheral insulin sensitivity in growth restricted females and has deleterious effects for hepatic insulin sensitivity, regardless of maternal birth weight.