19 resultados para lime-phosphorus feeds


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the expected theoretical capacity of 2596 mA h g-1, phosphorus is considered to be the highest capacity anode material for sodium-ion batteries and one of the most attractive anode materials for lithium-ion systems. This work presents a comprehensive study of phosphorus-carbon nanocomposite anodes for both lithium-ion and sodium-ion batteries. The composite electrodes are able to display high initial capacities of approximately 1700 and 1300 mA h g-1 in lithium and sodium half-cells, respectively, when the cells are tested within a larger potential windows of 2.0-0.01 V vs. Li/Li+ and Na/Na+. The level of demonstrated capacity is underpinned by the storage mechanism, based on the transformation of phosphorus to Li3P phase for lithium cells and an incomplete transformation to Na3P phase for sodium cells. The capacity deteriorates upon cycling, which is shown to originate from disintegration of electrodes and their delamination from current collectors by post-cycling ex situ electron microscopy. Stable cyclic performance at the level of ∼700 and ∼350-400 mA h g-1 can be achieved if the potential windows are restricted to 2.0-0.67 V vs. Li/Li+ for lithium and 2-0.33 vs. Na/Na+ for sodium half-cells. The results are critically discussed in light of existing literature reports

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we reported a new method in which molybdenum heteropolyacid salt was selected to mix with lanthanum oxide and bentonite, respectively, and the dipping method was used to prepare the new composites of heteropolyacid salt–lanthanum oxide, heteropolyacid salt–bentonite, and heteropolyacid salt–lanthanum oxide–bentonite. We observed that the composites have a better removal effect for phosphorus by control of the ratio and calcination temperature. The effect of quantity, adsorption time, phosphorus wastewater concentration, and pH value of composites on phosphorus adsorption was studied. We also found that the removal rate of phosphorus by the composite of heteropolyacid salt–lanthanum oxides increases up to 99.1% under the condition of 1:1 mass ratio and 500°C of calcination temperature. IR and XRD studies suggest that molybdenum heteropolyacid salt has been loaded to lanthanum oxide carrier successfully and heteropolyacid salt keeps the original Keggin structure. Heteropolyacid salt–lanthanum oxide has a good adsorption effect on phosphorus under the condition of 0.15 g of the composite, 90 min of adsorption time, phosphorus concentration of 50 mg L−1, and pH value of 3. The adsorption of phosphorus corresponds with the Langmuir isotherm model and Lagergren first-order kinetics equation. Therefore, the composite has excellent absorption ability and was competent in removing phosphorus with a low concentration from aqueous solution. It could be a great potential adsorbent for the removal of phosphorus in lakes, rivers, and reservoirs.