21 resultados para lantibiotic, synthetic, biology, nisin, cinnamycin, chimeric, leader, peptide


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deposition of islet amyloid polypeptide (IAPP) as islet amyloid in type 2 diabetes contributes to loss of β-cell function and mass, yet the mechanism for its occurrence is unclear. Neprilysin is a metallopeptidase known to degrade amyloid in Alzheimer disease. We previously demonstrated neprilysin to be present in pancreatic islets and now sought to determine whether it plays a role in degrading islet amyloid. We used an in vitro model where cultured human IAPP (hIAPP) transgenic mouse islets develop amyloid and thereby have increased β-cell apoptosis. Islet neprilysin activity was inhibited or up-regulated using a specific inhibitor or adenovirus encoding neprilysin, respectively. Following neprilysin inhibition, islet amyloid deposition and β-cell apoptosis increased by 54 and 75%, respectively, whereas when neprilysin was up-regulated islet amyloid deposition and β-cell apoptosis both decreased by 79%. To determine if neprilysin modulated amyloid deposition by cleaving hIAPP, analysis of hIAPP incubated with neprilysin was performed by mass spectrometry, which failed to demonstrate neprilysin-induced cleavage. Rather, neprilysin may act by reducing hIAPP fibrillogenesis, which we showed to be the case by fluorescence-based thioflavin T binding studies and electron microscopy. In summary, neprilysin decreases islet amyloid deposition by inhibiting hIAPP fibril formation, rather than degrading hIAPP. These findings suggest that targeting the role of neprilysin in IAPP fibril assembly, in addition to IAPP cleavage by other peptidases, may provide a novel approach to reduce and/or prevent islet amyloid deposition in type 2 diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Macrophages in the olfactory neuroepithelium are thought to play major roles in tissue homeostasis and repair. However, little information is available at present about possible heterogeneity of these monocyte-derived cells, their turnover rates, and the role of chemokine receptors in this process. To start addressing these issues, this study used Cx3cr1gfp mice, in which the gene sequence for eGFP was knocked into the CX3CR1 gene locus in the mutant allele. Using neuroepithelial whole-mounts from Cx3cr1gfp/+ mice, we show that eGFP+ cells of monocytic origin are distributed in a loose network throughout this tissue and can be subdivided further into two immunophenotypically distinct subsets based on MHC-II glycoprotein expression. BM chimeric mice were created using Cx3cr1gfp/+ donors to investigate turnover of macrophages (and other monocyte-derived cells) in the olfactory neuroepithelium. Our data indicate that the monocyte-derived cell population in the olfactory neuroepithelium is actively replenished by circulating monocytes and under the experimental conditions, completely turned over within 6 months. Transplantation of Cx3cr1gfp/gfp (i.e., CX3CR1-deficient) BM partially impaired the replenishment process and resulted in an overall decline of the total monocyte-derived cell number in the olfactory epithelium. Interestingly, replenishment of the CD68lowMHC-II+ subset appeared minimally affected by CX3CR1 deficiency. Taken together, the established baseline data about heterogeneity of monocyte-derived cells, their replenishment rates, and the role of CX3CR1 provide a solid basis to further examine the importance of different monocyte subsets for neuroregeneration at this unique frontier with the external environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

n16 is a framework protein family associated with biogenic mineral stabilization, thought to operate at three key interfaces in nacre: protein/β-chitin, protein/protein, and protein/CaCO3. The N-terminal half of this protein, n16N, is known to be active in conferring this mineral stabilization and organization. While some details relating to the stabilization and organization of the mineral are known, the molecular mechanisms that underpin these processes are not yet established. To provide these molecular-scale details, here we explore current hypotheses regarding the possible subdomain organization of n16N, as related to these three interfaces in nacre, by combining outcomes of Replica Exchange with Solute Tempering molecular dynamics simulations with NMR experiments, to investigate the conformational ensemble of n16N in solution. We verify that n16N lacks a well-defined secondary structure, both with and without the presence of Ca(2+) ions, as identified from previous experiments. Our data support the presence of three different, functional subdomains within n16N. Our results reveal that tyrosine, chiefly located in the center of the peptide, plays a multifunctional role in stabilizing conformations of n16N, for intrapeptide and possibly interpeptide interactions. Complementary NMR spectroscopy data confirm the participation of tyrosine in this stabilization. The C-terminal half of n16N, lacking in tyrosine and highly charged, shows substantive conformational diversity and is proposed as a likely site for nucleation of calcium carbonate. Finally, dominant structures from our predicted conformational ensemble suggest the presentation of key residues thought to be critical to the selective binding to β-chitin surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanomaterials are rich in potential, particularly for the formation of scaffolds that mimic the landscape of the host environment of the cell. This niche arises from the spatial organization of a series of biochemical and biomechanical signals. Self-assembling peptides have emerged as an important tool in the development of functional (bio-)nanomaterials; these simple, easily synthesized subunits form structures which present the properties of these larger, more complex systems. Scaffolds based upon these nanofibrous matrices are promising materials for regenerative medicine as part of a new methodology in scaffold design where a "bottom-up" approach is used in order to simulate the native cellular milieu. Importantly, SAPs hold the potential to be bioactive through the presentation of biochemical and biomechanical signals in a context similar to the natural extracellular matrix, making them ideal targets for providing structural and chemical support in a cellular context. Here, we discuss a new methodology for the presentation of biologically relevant epitopes through their effective presentation on the surface of the nanofibers. Here, we demonstrate that these signals have a direct effect on the viability of cells within a three-dimensional matrix as compared with an unfunctionalized, yet mechanically and morphologically similar system. © 2014 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 102: 197-205, 2014.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioinorganic natural product chemistry is a relatively unexplored but rapidly developing field with enormous potential for applications in biology, biotechnology (especially in regards to nanomaterial development, synthesis and environmental cleanup) and biomedicine. In this review the occurrence of metals and metalloids in natural products and their synthetic derivatives are reviewed. A broad overview of the area is provided followed by a discussion on the more common metals and metalloids found in natural sources, and an overview of the requirements for future research. Special attention is given to metal hyperaccumulating plants and their use in chemical synthesis and bioremediation, as well as the potential uses of metals and metalloids as therapeutic agents. The potential future applications and development in the field are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND/AIMS: In recent times, allergy has become a financial, physical and psychological burden to the society as a whole. In allergic cascades, cytokine IL-4 binds to IL-4 receptor (IL-4R), consequently producing allergen-specific IgE antibodies by B cells. In addition, among other functions, IL-4 is also responsible for B and T cell proliferation and differentiation. Hence, characterization of novel antagonists that inhibit IL-4 signalling forms the overall aim of this study. METHODS: Phage display was used to screen a random 12-mer synthetic peptide library with a human IL-4Rα to identify peptide candidates. Once identified, the peptides were commercially synthesized and used for in vitro immunoassays. RESULTS: We have successfully used phage display to identify M13 phage clones that demonstrated specific binding to IL-4Rα. The peptide N1 was synthesized for use in ELISA, demonstrating significant binding to IL-4Rα and inhibiting interaction with cytokine IL-4. Furthermore, the peptide was tested in a transfected HEK-Blue IL-4 reporter cell line model, which produces alkaline phosphatase (AP). QUANTI-Blue, a substrate, breaks down in the presence of AP producing a blue coloration. Using this colorimetric analysis, >50% inhibition of IL-4 signalling was achieved. CONCLUSION: We have successfully identified and characterised a synthetic peptide antagonist against IL-4Rα, which effectively inhibits IL-4 interaction with the IL-4Rα in vitro. Since IL-4 interaction with IL-4Rα is a common pathway for many allergies, a prophylactic treatment can be devised by inhibiting this interaction for future treatment of allergies.