28 resultados para infrared and Raman spectra


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report a simple, rapid, and robust method to synthesize surface-enhanced Raman-scattered gold nanoparticles (GNPs) based on green chemistry. Vitis vinifera L. extract was used to synthesize noncytotoxic Raman-active GNPs. These GNPs were characterized by ultraviolet-visible spectroscopy, dynamic light-scattering, Fourier-transform infrared (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. The characteristic surface plasmon-resonance band at ~528 nm is indicative of spherical particles, and this was confirmed by TEM. The N–H and C–O stretches in FTIR spectroscopy indicated the presence of protein molecules. The predominant XRD plane at (111) and (200) indicated the crystalline nature and purity of GNPs. GNPs were stable in the buffers used for biological studies, and exhibited no cytotoxicity in noncancerous MIO-M1 (Müller glial) and MDA-MB-453 (breast cancer) cell lines. The GNPs exhibited Raman spectral peaks at 570, 788, and 1,102 cm-1. These new GNPs have potential applications in cancer diagnosis, therapy, and ultrasensitive biomarker detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synchrotron infrared (IR) and micro-Raman spectra of natrolites containing alkaline-earth ions (Ca2+, Sr2+, and Ba2+) and heavy metals (Cd2+, Pb2+, and Ag+) as extra-framework cations (EFCs) were measured under ambient conditions. Complementing our previous spectroscopic investigations of natrolites with monovalent alkali metal (Li+, Na+, K+, Rb +, and Cs+) EFCs, we establish a correlation between the redshifts of the frequencies of the 4-ring and helical 8-ring units and the size of the EFCs in natrolite. Through ab initio calculations we have derived structural models of Ca2+- and Ag+-exchanged natrolites with hydrogen atoms, and found that the frequency shifts in the H - O - H bending mode and the differences in the O - H stretching vibration modes can be correlated with the orientations of the water molecules along the natrolite channel. Assuming that the members of a solid solution series behave as an ideal mixture, we will be able to use spectroscopy to probe compositions. Deviation from ideal behavior might indicate the occurrence of phase separation on various length scales. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectroscopy is among the primary techniques for the characterisation of graphene materials, as it provides insights into the quality of measured graphenes including their structure and conductivity as well as the presence of dopants. However, our ability to draw conclusions based on such spectra is limited by a lack of understanding regarding the origins of the peaks. Consequently, traditional characterisation techniques, which estimate the quality of the graphene material using the intensity ratio between the D and the G peaks, are unreliable for both GO and rGO. Herein we reanalyse the Raman spectra of graphenes and show that traditional methods rely upon an apparent G peak which is in fact a superposition of the G and D' peaks. We use this understanding to develop a new Raman characterisation method for graphenes that considers the D' peak by using its overtone the 2D'. We demonstrate the superiority and consistency of this method for calculating the oxygen content of graphenes, and use the relationship between the D' peak and graphene quality to define three regimes. This has important implications for purification techniques because, once GO is reduced beyond a critical threshold, further reduction offers limited gain in conductivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectroscopy (RS) was used to determine the crystallinity of lactose (a commonly used carrier in dry powder inhaler (DPI) formulations). Samples of α-lactose monohydrate and amorphous lactose were prepared using ethanol precipitation and lyophilisation respectively. The anomeric forms were confirmed using DSC at a rate of 10 °C/min and heated to 250 °C. The Raman spectra of both α-lactose monohydrate and amorphous lactose were obtained. Distinguishable differences were seen between the two spectra including peak areas and intensities. Depolarisation ratios (ρ) of each form were then determined to identify the crystallinity of the lactose carrier samples. At the prominent Raman bands 865 and 1082 cm−1, significant differences in ρ values were observed for crystalline (0.80 ± 0.07, 0.89 ± 0.06 respectively) and amorphous samples (0.44 ± 0.07, 0.51 ± 0.10).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-assembling behavior of a single-chain quaternary ammonium amphiphile bearing azobenzene (C12AzoC6N+) on freshly cleaved mica sheet has been investigated by atomic force microscopy (AFM) method. Confocal microscopic Raman spectra confirm the adsorption of the self-assembled monolayer structure. Ex-situ AFM reveals that C12AzoC6N+ forms branch-like stripes indicating the fusion and reorganization of the micelles during drying in air as the in-situ AFM has revealed that surfactant forms spherical micelles on the mica surface. The nano-sized surface structure is strongly dependent on the change of molecular structure, which resulted from photo-induced isomerization. The nano-sized stripe is quite stable even being annealed at 90 °C for 4 h.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Describes the development of a cell to hold loose wool fibre, fabric and yarn samples for the collection of Fourier Transform Raman spectra. Then follows a detailed study of reactions of Lanasol (Ciba) dyes with wool, the dyes forming covalent bonds with various amino acids in the fibres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-crystal samples of the 1:1 adduct between cyanuric acid and melamine (CA·M), an outstanding case of noncovalent synthesis, have been studied by Raman spectroscopy and synchrotron X-ray diffraction in a diamond anvil cell up to pressures of 15 GPa. The abrupt changes in Raman spectra around 4.4 GPa have provided convincing evidence for pressure-induced structural phase transition. This phase transition was confirmed by angle dispersive X-ray diffraction (ADXRD) experiments to be a space group change from C2/m to its subgroup P21/m. On release of pressure, the observed transition was irreversible, and the new high-pressure phase was fully preserved at ambient conditions. We propose that this phase transition was due to supramolecular rearrangements brought about by changes in the hydrogen bonding networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the suspension of MoO3 nanobelts was first prepared in a hydrothermal way from Mo powders and H2O2 solution, which could be transformed into the suspension of HxMoO3 nanobelts under an acidic condition using N2H4 ·H2O as the reducing agent. Three paper-form samples made from MoO3 and HxMoO3 nanobelts (low or high hydrogen content) were then fabricated via a vacuum filtration method, followed by their structural comparative analysis such as FESEM, XRD, Raman spectra, and XPS, etc. The measurement of electric resistances at room temperature shows that the conductance of HxMoO3 nanobelts is greatly improved because of hydrogen doping. The temperature-dependent resistances of HxMoO3 nanobelts agree with the exponential correlation, supporting that the conducting carriers are the quasi-free electrons released from Mo5+. In addition, the formation process of HxMoO3 nanobelts from MoO3 nanobelts is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Utilizing the electrical properties of polymer nanocomposites is an important strategy to develop high performance solvent sensors. Here we report the synergistic effect of multi walled carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) in regulating the sensitivity of the naturally occurring elastomer, natural rubber (NR). Composites were fabricated by dispersing CNTs alone and together with exfoliated RGO sheets (thermally reduced at temperatures of 200 and 600 °C) in NR by a solution blending method. RGO exfoliation and the uniform distribution of fillers in the composites were studied by atomic force microscopy, Fourier transformation infrared spectroscopy, X-ray diffraction, transmission electron microscopy and Raman spectroscopy. The solvent sensitivity of the composite samples was noted from the sudden variation in electrical conductivity which was due to the breakdown of the filler networks during swelling in different solvents. It was found that the synergy between CNTs and RGO exfoliated at 200 °C imparts maximum sensitivity to NR in recognizing the usually used aromatic laboratory solvents. Mechanical and dynamic mechanical studies reveal efficient filler reinforcement, depending strongly on the nature of filler-elastomer interactions and supports the sensing mechanism. Such interactions were quantitatively determined using the Maier and Göritz model from Payne effect experiments. It is concluded that the polarity induced by RGO addition reduces the interactions between CNTs and ultimately results in the solvent sensitivity. © 2013 The Royal Society of Chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A direct approach to functionalize and reduce pre-shaped graphene oxide 3D architectures is demonstrated by gamma ray irradiation in gaseous phase under analytical grade air, N2 or H2. The formation of radicals upon gamma ray irradiation is shown to lead to surface functionalization of the graphene oxide sheets. The reduction degree of graphene oxide, which can be controlled through varying the γ-ray total dose irradiation, leads to the synthesis of highly crystalline and near defect-free graphene based materials. The crystalline structure of the graphene oxide and γ-ray reduced graphene oxide was investigated by x-ray diffraction and Raman spectroscopy. The results reveal no noticeable changes in the size of sp2 graphitic structures for the range of tested gases and total exposure doses suggesting that the irradiation in gaseous phase does not damage the graphene crystalline domains. As confirmed by X-ray photoemission spectroscopy, the C/O ratio of γ-ray reduced graphene oxide is increasing from 2.37 for graphene oxide to 6.25 upon irradiation in hydrogen gas. The removal of oxygen atoms with this reduction process in hydrogen results in a sharp 400 times increase of the electrical conductivity of γ-ray reduced graphene oxide from 0.05 S cm-1 to as high as 23 S cm-1. A significant increase of the contact angle of the γ-ray reduced graphene oxide bucky-papers and weakened oxygen rich groups characteristic peaks across the Fourier transform infrared spectra further illustrate the efficacy of the γ-ray reduction process. A mechanism correlating the interaction between hydrogen radicals formed upon γ-ray irradiation of hydrogen gas and the oxygen rich groups on the surface of the graphene oxide bucky-papers is proposed, in order to contribute to the synthesis of reduced graphene materials through solution-free chemistry routes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A facile and highly efficient route to produce simultaneously porous and reduced graphene oxide by gamma ray irradiation in hydrogen is here demonstrated. Narrowly distributed nano-scale pores (average size of ∼3 nm and surface density >44,900 pore μm-2) were generated across 10 μm thick graphene oxide bucky-papers at a total irradiation dose of 500 kGy. The graphene oxide sheet reduction was confirmed to occur homogeneously across the structures by Fourier transform infrared spectroscopy and Raman analysis. This one-step, catalyst-free, high penetration and through-put technique, offers great promises potential for the mass production of reduced graphene oxide from cheap graphene oxide. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physicochemical properties of hemp biomass structure to pretreatment and enzymatic hydrolysis were investigated to improve upon reducing sugar production for biofuel development. Sodium hydroxide pretreated biomass (SHPB) yielded maximum conversion of holocellulose into reducing sugar (72 %). Scanning electron microscopy (SEM) revealed that enzymatic hydrolysis generated regular micropores in the fragmented biomass structure. The thermogravimetric analysis (TGA) curve suggested the degradation of hemicellulose and cellulose, which conformed well to the subsequent nuclear magnetic resonance (NMR) studies indicating the presence of α- and β-glucose (28.4 %) and α- and β-xylose (10.7 %), the major carbohydrate components commonly found in hydrolysis products of hemicellulose and cellulose. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectra showed stretching modes of the lignin acetyl group, suggesting the loosening of the polymer matrix and thus the exposure of the cellulose polymorphs. X-ray diffraction pattern indicated that enzymatic hydrolysis caused a higher crystallinity index (36.71), due to the fragmentation of amorphous cellulose leading to the reducing sugar production suitable for biofuel development.