34 resultados para ilmenite oxide materials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To decrease the consumption of fossil fuels, research has been done on utilizing low grade heat, sourced from industrial waste streams. One promising thermoenergy conversion system is a thermogalvanic cell; it consists of two identical electrodes held at different temperatures that are placed in contact with a redox-based electrolyte [1, 2]. The temperature dependence of the direction of redox reactions allows power to be extracted from the cell [3, 4]. This study aims to increase the power conversion efficiency and reduce the cost of thermogalvanic cells by optimizing the electrolyte and utilizing a carbon based electromaterial, reduced graphene oxide, as electrodes. Thermal conductivity measurements of the K3Fe(CN)6/K4Fe(CN)6 solutions used, indicate that the thermal conductivity decreases from 0.591 to 0.547 W/m K as the concentration is increased from 0.1 to 0.4 M. The lower thermal conductivity allowed a larger temperature gradient to be maintained in the cell. Increasing the electrolyte concentration also resulted in higher power densities, brought about by a decrease in the ohmic overpotential of the cell, which allowed higher values of short circuit current to be generated. The concentration of 0.4 MK3Fe(CN)6/K4Fe(CN)6 is optimal for thermal harvesting applications using R-GO electrodes due to the synergistic effect of the reduction in thermal flux across the cell and the enhancement of power output, on the overall power conversion efficiency. The maximum mass power density obtained using R-GO electrodes was 25.51 W/kg (three orders of magnitude higher than platinum) at a temperature difference of 60 _C and a K3Fe(CN)6/K4Fe(CN)6 concentration of 0.4 M.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we report a facile method for preparing graphene oxide (GO) hybrid materials consisting of copper ions (Cu2+) complexed with GO, where Cu2+ acted as bridges connecting GO sheets. The method of film formation is based on cross-linking GO using Cu2+ followed by filtration onto nanoporous supports. This binding can be rationalized due to the chemical interaction between the functional groups on GO and the metal ion. We observed that there was a decrease in charge transfer resistance through electrochemical study. It suggests that the presence of metal ions in GO films could introduce new energy levels along the electron transport pathway and open up possible conduction channels. We also found that the hybrid graphene film assembled with Cu2+ dramatically decreases resistance through flash light reduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Key points in the formation of liquid crystalline (LC) dispersions of graphene oxide (GO) and their processability via wet-spinning to produce long lengths of micrometer-dimensional fibers and yarns are addressed. Based on rheological and polarized optical microscopy investigations, a rational relation between GO sheet size and polydispersity, concentration, liquid crystallinity, and spinnability is proposed, leading to an understanding of lyotropic LC behavior and fiber spinnability. The knowledge gained from the straightforward formulation of LC GO “inks” in a range of processable concentrations enables the spinning of continuous conducting, strong, and robust fibers at concentrations as low as 0.075 wt%, eliminating the need for relatively concentrated spinning dope dispersions. The dilute LC GO dispersion is proven to be suitable for fiber spinning using a number of coagulation strategies, including non-solvent precipitation, dispersion destabilization, ionic cross-linking, and polyelectrolyte complexation. One-step continuous spinning of graphene fibers and yarns is introduced for the first time by in situ spinning of LC GO in basic coagulation baths (i.e., NaOH or KOH), eliminating the need for post-treatment processes. The thermal conductivity of these graphene fibers is found to be much higher than polycrystalline graphite and other types of 3D carbon based materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, we report a solid-state reduction process (in contrast to solution-based approach) by using an environmentally friendly reductant, such as vitamin C (denoted VC), to be directly employed to solid-state graphene oxide (GO) templates to give the highly active rGO architecture with a sheet resistance of as low as 10 Ω sq–1. In addition, predesigned rGO patterns/tracks with tunable resistivity can be directly “written” on a preprepared solid GO film via the inkjet-printing technique using VC/H2O as the printing-ink. This advanced reduction process allows foreign active materials to be preincorporated into the GO matrix to form quality active composite architectures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A direct approach to functionalize and reduce pre-shaped graphene oxide 3D architectures is demonstrated by gamma ray irradiation in gaseous phase under analytical grade air, N2 or H2. The formation of radicals upon gamma ray irradiation is shown to lead to surface functionalization of the graphene oxide sheets. The reduction degree of graphene oxide, which can be controlled through varying the γ-ray total dose irradiation, leads to the synthesis of highly crystalline and near defect-free graphene based materials. The crystalline structure of the graphene oxide and γ-ray reduced graphene oxide was investigated by x-ray diffraction and Raman spectroscopy. The results reveal no noticeable changes in the size of sp2 graphitic structures for the range of tested gases and total exposure doses suggesting that the irradiation in gaseous phase does not damage the graphene crystalline domains. As confirmed by X-ray photoemission spectroscopy, the C/O ratio of γ-ray reduced graphene oxide is increasing from 2.37 for graphene oxide to 6.25 upon irradiation in hydrogen gas. The removal of oxygen atoms with this reduction process in hydrogen results in a sharp 400 times increase of the electrical conductivity of γ-ray reduced graphene oxide from 0.05 S cm-1 to as high as 23 S cm-1. A significant increase of the contact angle of the γ-ray reduced graphene oxide bucky-papers and weakened oxygen rich groups characteristic peaks across the Fourier transform infrared spectra further illustrate the efficacy of the γ-ray reduction process. A mechanism correlating the interaction between hydrogen radicals formed upon γ-ray irradiation of hydrogen gas and the oxygen rich groups on the surface of the graphene oxide bucky-papers is proposed, in order to contribute to the synthesis of reduced graphene materials through solution-free chemistry routes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple fiber spinning method used to fabricate elastomeric composite fibers with outstanding mechanical performance is demonstrated. By taking advantage of the large size of as-prepared graphene oxide sheets (in the order of tens of micrometers) and their liquid crystalline behavior, elastomeric composite fibers with outstanding low strain properties have been fabricated without compromising their high strain properties. For example, the modulus and yield stress of the parent elastomer improved by 80- and 40-fold, respectively, while maintaining the high extensibility of ∼400% strain inherent to the parent elastomer. This outstanding mechanical performance was shown to be dependent upon the GO sheet size. Insights into how both the GO sheet size dimension and dispersion parameters influence the mechanical behavior at various applied strains are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid composite membranes have great potential for desalination applications since water transport can be favorably promoted by selective diffusion at the interface between matrix and reinforcement materials. In this paper, graphene oxide nano-sheets were successfully incorporated across 200nm thick poly(amide) films by interfacial polymerization to form novel thin-film composite membranes. The impact of the graphene oxide on the morphology, chemistry, and surface charge of the ultra-thin poly(amide) layer, and the ability to desalinate seawater was investigated. The graphene oxide nano-sheets were found to be well dispersed across the composite membranes, leading to a lower membrane surface energy and an enhanced hydrophilicity. The iso-electric point of the samples, key to surface charge repulsion during desalination, was found to be consistently shifted to higher pH values with an increasing graphene oxide content. Compared to a pristine poly(amide) membrane, the pure water flux across the composite membranes with 0.12wt.% of graphene oxide was also found to increase by up to 80% from 0.122 to 0.219L·μm·m-2·h-1·bar-1 without significantly affecting salt selectivity. Furthermore, the inhibitory effects of the composite membrane on microbial growth were evaluated and the novel composite membranes exhibited superior anti-microbial activity and may act as a potential anti-fouling membrane material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A facile and highly efficient route to produce simultaneously porous and reduced graphene oxide by gamma ray irradiation in hydrogen is here demonstrated. Narrowly distributed nano-scale pores (average size of ∼3 nm and surface density >44,900 pore μm-2) were generated across 10 μm thick graphene oxide bucky-papers at a total irradiation dose of 500 kGy. The graphene oxide sheet reduction was confirmed to occur homogeneously across the structures by Fourier transform infrared spectroscopy and Raman analysis. This one-step, catalyst-free, high penetration and through-put technique, offers great promises potential for the mass production of reduced graphene oxide from cheap graphene oxide. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the development of a stacked electrode supercapacitor cell using stainless steel meshes as the current collectors and optimised single walled nanotubes (SWNT)-microwave exfoliated graphene oxide (mw rGO) composites as the electrode material. The introduction of mw rGO into a SWNT matrix creates an intertwined porous structure that enhances the electroactive surface area and capacitive performance due to the 3-D hierarchical structure that is formed. The composite structure was optimised by varying the weight ratio of the SWNTs and mw rGO. The best performing ratio was the 90% SWNT-10% mw rGO electrode which achieved a specific capacitance of 306 F g-1 (3 electrode measurement calculated at 20 mV s-1). The 90% SWNT-10% mw rGO was then fabricated into a stacked electrode configuration (SEC) which significantly enhanced the electrode performance per volume (1.43 mW h cm-3, & 6.25 W cm-3). Device testing showed excellent switching capability up to 10 A g-1, and very good stability over 10000 cycles at 1.0 A g-1 with 93% capacity retention. © the Partner Organisations 2014.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2014 Elsevier Ltd. All rights reserved. Conducting polymers (CPs) are currently being investigated for use in many applications owing to their abilities to catalyze a wide range of electrochemical reactions and act as an effective electrode support for various inorganic and organic electrocatalyst materials. Here, we have found that the deposition of poly(3,4-ethylenedioxythiophene) (PEDOT) through the use of an established base-inhibited chemical vapor-phase polymerization (VPP) procedure using an iron(III) tosylate oxidant results in the co-deposition of electrocatalytic iron(II) oxide species within the film. The presence of these species accounts for the 2-electron reduction of hydrogen peroxide that occurs on these electrodes during the series 4-electron oxygen reduction reaction. Furthermore, this realization leads to the possibility of fabricating thin film inorganic/CP composites of various compositions through careful choice of oxidant in a facile, one-step process. A combination of in situ Raman (487.77 nm laser) and in situ UV-Vis spectroscopy was used to probe the oxidation state of PEDOT in the thin film composite electrodes while reducing oxygen in alkaline conditions. These measurements show that the 2-electron electroreduction of hydrogen peroxide (or HO2 -) occurs only on the iron(II) oxide species in a reaction that is facilitated by an effective electron transfer from the delocalized electron orbitals of the PEDOT matrix. This approach could potentially be used in situ to monitor the electrocatalyst/electrode interface quality of conducting polymer-supported electrocatalysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indium oxide nanoparticles were synthesised by using a facile and scalable strategy. The as-prepared nanoparticles (20-40 nm) were in situ and homogeneously distributed in a three-dimensional (3D) graphene architecture subsequently during the fabrication process. The obtained nanocomposite acts as a high capacity anode material for lithium-ion batteries and demonstrates good cycle stability. A drastically enhanced capacity of 750 mA h g-1 in comparison with that of bare In2O3 nanoparticles can be maintained after 100 cycles, along with an improved high rate performance (210 mA h g-1 at 1 A g-1 and 120 mA h g-1 at 2 A g-1). The excellent performance is linked with the indium oxide nanoparticles and the unique 3D interconnected porous graphene structure. The highly conductive and porous 3D graphene structure greatly enhances the performance of lithium-ion batteries by protecting the nanoparticles from the electrolyte, stabilizing the nanoparticles during cycles and buffering the volume expansion upon lithium insertion.