43 resultados para hydrophilic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present measurements of the thickness as a function of time of liquid films as they are squeezed between molecularly smooth mica surfaces. Three Newtonian, nonpolar liquids have been studied: octamethylcyclotetrasiloxane, n-tetradecane, and n-hexadecane. The film thicknesses are determined with an accuracy of 0.2 nm as they drain from ∼1 μm to a few molecular layers. Results are in excellent agreement with the Reynolds theory of lubrication for film thicknesses above 50 nm. For thinner films the drainage is slower than the theoretical prediction, which can be accounted for by assuming that the liquid within about two molecular layers of each solid surface does not undergo shear. In very thin films the continuum Reynolds theory breaks down, as drainage occurs in a series of abrupt steps whose size matches the thickness of molecular layers in the liquid. The presence of trace amounts of water has a dramatic effect on the drainage of a nonpolar liquid between hydrophilic surfaces, causing film rupture which is not observed in the dry liquids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The drainage under gravity of a vertical foam film formed on a wire frame has been investigated. Dual-wavelength optical interferometry was used so that unambiguous fringe order assignments could be made, enabling absolute film thicknesses to be calculated with confidence. Films were stabilized by nonionic polypropylene glycol surfactant. Halfmicrometer silica particles with varying degrees of hydrophobicity were added to the film-forming liquid to investigate their effect on film drainage rate and stability. Hydrophilic particles had little or no effect, while hydrophobic particles slowed the drainage of the film and caused a minor increase in film lifetime, from ∼10 to ∼30 s. In both the hydrophilic and hydrophobic cases the films ruptured when they reached a thickness of ∼2 particle diameters. Particles of intermediate hydrophobicity had the most significant effect, increasing film lifetime by an order of magnitude over that for hydrophilic particles. The intermediate particles allowed films to thin down to a thickness less than the particle diameter, indicating that particles bridge across the entire film. This did not occur with more hydrophobic particles even though they were embedded in each of the two film surfaces. These results correlate well with previous literature on particle-laden foams. The film thickness and drainage measurements allow drainage mechanisms for the different particles to be identified, thus providing a mechanistic explanation for the observation by several previous authors that foams formed in the presence of particles, for example during mineral processing, have the greatest stability when the particles are of intermediate hydrophobicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SEM observations of low solid content vitrified clay suspensions reveal that clay platelets build porous three-dimensional networks with platelets contacting each other mostly by their edges. To explain this behaviour, which must require long range edge-to-edge (EE) attractive forces, a hydrophobic-like interaction has been proposed. This interaction may be induced by the presence of nano-bubbles existing on the edges of clay crystals which may cause clay particles to flocculate. The following indirect evidence for such hydrophobic behaviour is presented. First, a clay platelet is shown attached to an oil drop by its edge; second, clay flocs were attracted by a vertically placed Teflon strip but not to the hydrophilic mica basal surface; third, a much thicker porous sediment occurred in CO2-saturated water solution compared with vacuum degassed water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we demonstrate that fabrics having a wettability gradient from superhydrophobic to hydrophilic through the thickness direction show a novel directional water transfer effect: water can transfer only from the superhydrophobic to the hydrophilic side, but not in the opposite direction unless an external force is applied. A sol-gel technology was used to prepare a superhydrophobic coating on fabrics, and the coated fabrics showed water contact-angle as high as 165°. When the coated fabric was subjected to a photochemistry treatment from one fabric side, the irradiated surface turned hydrophilic permanently, while the back side still maintained the superhydrophobicity. The treated fabric can transfer water droplet rapidly from hydrophobic to hydrophilic side, and the pressure allowing water breakthrough the fabric is different considerably between the two fabric sides. The directional water transfer effect is also affected by the wettability gradient. Such a directional water transfer coating may be useful to develop new functional fabrics for defence applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, novel properties have been observed when superhydrophobic and superhydrophilic surfaces are combined. For example, the Stenocara beetle, an insect in the Namib Desert, has an incredible ability to capture fresh water from air for its survival in the dry desert environment [1]. Such a feature derives from its special wing that has a hydrophilic-patterned superhydrophobic surface. Materials having a similar surface feature also exhibited a similar water-harvesting function [2]. A spider silk has been reported to show a periodic alternation of hydrophobic and hydrophilic surfaces along the fiberlength direction [3], which can quickly collect water from air. It was also observed that water droplets moved in one direction along a superhydrophobic-to-superhydrophilic gradient surface [4]. However, all these works are based on two dimension surfaces. The work on water transfer through porous media induced by a gradient wettability change has received little attention until very recently [5]. In this study, we have developed a simple, but very effective and versatile, method to produce wettability gradient across the thickness of fabrics, and demonstrated that the fabrics have the ability to spontaneously transfer water unidirectionally through the fibrous architecture. A plain weave polyester fabric was mainly used as a sample material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we demonstrate that fabrics having a wettability gradient from superhydrophobic to hydrophilic through the thickness direction show a novel directional water transfer effect: water can transfer from the superhydrophobic to the hydrophilic side, but not in the opposite direction unless an external force is applied. A sol-gel technology was used to prepare a nano-structured superhydrophobic coating on fabrics, and the coated fabrics showed water contact-angle as high as 165 degrees. When the coated fabric was subjected to a photochemistry treatment from one fabric side, the irradiated surface turned hydrophilic permanently, while the back side still maintained the superhydrophobicity. The treated fabric can transfer water droplet rapidly from hydrophobic to hydrophilic side, and the pressure allowing water breakthrough the fabric are different considerably between the two fabric sides. The directional water transfer effect is affected by the wettability gradient. Such a directional water transfer coating may be useful to develop new functional fabrics for defence applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric pressure plasma treatment of wool fabric, with a relatively short exposure time, effectively removed the covalently bonded lipid layer from the wool surface. The plasma-treated fabric showed increased wettability and the fibres showed greater roughness. X-ray photoelectron spectroscopy (XPS) analysis showed a much more hydrophilic surface with significant increases in oxygen and nitrogen concentrations and a decrease in carbon concentration. Adhesion, as measured by scanning probe microscopy (SPM) force volume analysis, also increased, consistent with the more hydrophilic surface leading to a greater meniscus force on the SPM probe. The ageing of fibres from the plasma-treated fabric was assessed over a period of 28 days. While no physical changes were observed, the chemical nature of the surface changed significantly. XPS showed a decrease in the hydrophilic nature of the surface with time, consistent with the measured decrease in wettability. This change is proposed to be due to the reorientation of proteolipid chains. SPM adhesion studies also showed the surface to be changing with time. After ageing for 28 days, the plasma-treated surface was relatively stable and still dramatically different from the untreated fibre, suggesting that the oxidation of the surface and modification or removal of the lipid layer were permanent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drug delivery systems with active targeting ligand provide improved therapeutic efficiency due to the selectivity towards tumor cells. In this paper we prepared drug loaded nanoparticles (NPs) using folate (FA) incorporated chitosan (FA-CS) based on ionic gelation technology. FA-CS NPs were spherical in shape with an average particle size of 100 nm, while 5-fluorouracil (5-FU) loaded NPs became less circular with average particle size of 100-500 nm. NPs made from FA-CS conjugates exhibited improved capability to encapsulate hydrophilic 5-FU. It was found 5-FU distributed in FA-CS NPs in solid solution state. In vitro release results demonstrated the release of 5-FU from FA-CS NPs was more controllable as compared to that of CS NPs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasma treatment is an emerging surface modification technique that alters dye uptake of wool without using chemicals or water for pre-treatment. Padding is an established continuous dyeing technique known for its efficient use of water, time and energy. This study combined these two techniques for colouration of wool fabric using two natural dyes derived from the Acacia plant family. The investigation focused on the effects of plasma treatment and obtaining unique patterning effects. Helium (100%) and a mixture of helium and nitrogen (95%/5%) were used as the plasma gases under atmospheric conditions. Plasma treated wool fabric was padded with the above natural dyes. Copper sulphate and ferrous sulphate were applied on the dyed fabric as mordant yielding neutral shades of beige and grey respectively. Up to a 30% enhancement of dye adsorption on plasma treated wool substrate was observed as compared to untreated sample for both gases used. This higher adsorption indicates the hydrophilic character of the natural dyes used. Key performance parameters such as fastness to washing, rubbing and light were tested and found to be satisfactory. A single process tone-on-tone pattern was achieved by controlling the plasma exposure of treated area. This study concluded that a merger of natural dyes with modern plasma treatment and padding techniques for wool colouration was feasible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hydrophobin EAS from the fungus Neurospora crassa forms functional amyloid fibrils called rodlets that facilitate spore formation and dispersal. Self-assembly of EAS into fibrillar rodlets occurs spontaneously at hydrophobic:hydrophilic interfaces and the rodlets further associate laterally to form amphipathic monolayers. We have used site-directed mutagenesis and peptide experiments to identify the region of EAS that drives intermolecular association and formation of the cross-β rodlet structure. Transplanting this region into a nonamyloidogenic hydrophobin enables it to form rodlets. We have also determined the structure and dynamics of an EAS variant with reduced rodlet-forming ability. Taken together, these data allow us to pinpoint the conformational changes that take place when hydrophobins self-assemble at an interface and to propose a model for the amphipathic EAS rodlet structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a surface force apparatus, we have measured the normal and friction forces between layers of the human glycoprotein lubricin, the major boundary lubricant in articular joints, adsorbed from buffered saline solution on various hydrophilic and hydrophobic surfaces: i), negatively charged mica, ii), positively charged poly-lysine and aminothiol, and iii), hydrophobic alkanethiol monolayers. On all these surfaces lubricin forms dense adsorbed layers of thickness 60–100 nm. The normal force between two surfaces is always repulsive and resembles the steric entropic force measured between layers of end-grafted polymer brushes. This is the microscopic mechanism behind the antiadhesive properties showed by lubricin in clinical tests. For pressures up to ∼6 atm, lubricin lubricates hydrophilic surfaces, in particular negatively charged mica (friction coefficient μ = 0.02–0.04), much better than hydrophobic surfaces (μ > 0.3). At higher pressures, the friction coefficient is higher (μ > 0.2) for all surfaces considered and the lubricin layers rearrange under shear. However, the glycoprotein still protects the underlying substrate from damage up to much higher pressures. These results support recent suggestions that boundary lubrication and wear protection in articular joints are due to the presence of a biological polyelectrolyte on the cartilage surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we describe the surface modification of porous polyethylene by the adsorption of polyelectrolyte mutilayers on plasma‐activated polyethylene surfaces. We use the migration rates of deionized water as an effective alternative to contact angle measurements in order to probe the interfacial energy of the modified surface. The newly acquired surface properties that result from the surface modification are monitored with respect to several key chemical and environmental variables. These variables were chosen so that they will reflect some of the common handling procedures in a laboratory or health care environments, such as exposure to solvents of different pH and polarities, and fluctuations of ambient temperature over an extended period, i.e., “shelf‐life” duration. The stability of these surface properties of the modified membranes is a fundamental requirement for their potential use in a variety of applications involving lateral flow and binding media for bio‐assays. In this paper, we show that a membrane modified by a polyelectrolyte monolayer is more stable than a membrane that has undergone plasma activation alone, while a membrane modified by a polyelectrolyte bilayer exhibits retention of the enhanced surface hydrophilic properties under various conditions and over a long period of time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrophilic and chemically reactive porous media were prepared by adsorbing functional polymers at the surface of sintered polyethylene membranes. Modification of the membrane was accomplished by first exposing the membrane to an oxygen glow discharge gas plasma to introduce an electrostatic charge at the membrane surfaces. Cationic polyelectrolyte polyethylenimine (PEI) was adsorbed from solution to the anionic-charged surface to form an adsorbed monolayer. The adsorption of a second anionic polyelectrolyte onto the PEI layer allows further modification of the membrane surface to form a polyelectrolyte-bilayer complex. The conformation and stability of the adsorbed monolayers and bilayers comprising the modified surface are probed as a function of the polymer structure, charge density, and solubility. Using X-ray photoelectron spectroscopy analysis, we demonstrate that the presence of the polyelectrolyte multilayers drastically increases the density and specificity of the functional groups at the surface, more than what can be achieved through the plasma modification alone. Also, using the wicking rate of deionized, distilled water through the porous membrane to gauge the interfacial energy of the modified surface, we show that the membrane wicking rate can be controlled by varying the chemistry of the adsorbing polyelectrolytes and, to a lesser extent, by adjusting the polarity or ionic strength of the polyelectrolyte solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite materials suitable for use in water-vapour permeable, liquid water resistant, thermal regulating fabrics and textiles. The compiste material may relate to alternate layered products each comprising two or more of the following: an insulation layer; a water resistant membrance; a moisture-vapour permeable, substantially liquid impermeable material, a layer of infrared reflective metallic material; a hydrophobic fabric layer; a hydrophilic wicking material; and a layer comprising a 'functional material'.