128 resultados para high-intensity exercise


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mild physical activity performed immediately after a bout of intense exercise in fasting humans results in net glycogen breakdown in their slow oxidative (SO) muscle fibers and glycogen repletion in their fast twitch (FT) fibers. Because several animal species carry a low proportion of SO fibers, it is unclear whether they can also replenish glycogen in their FT fibers under these conditions. Given that most skeletal muscles in rats are poor in SO fibers (<5%), this issue was examined using groups of 24-h fasted Wistar rats (n = 10) that swam for 3 min at high intensity with a 10% weight followed by either a 60-min rest (passive recovery, PR) or a 30-min swim with a 0.5% weight (active recovery, AR) preceding a 30-min rest. The 3-min sprint caused 61–79% glycogen fall across the muscles examined, but not in the soleus (SOL). Glycogen repletion during AR without food was similar to PR in the white gastrocnemius (WG), where glycogen increased by 71%, and less than PR in both the red and mixed gastrocnemius (RG, MG). Glycogen fell by 26% during AR in the SOL. Following AR, glycogen increased by 36%, 87%, and 37% in the SOL, RG, and MG, respectively, and this was accompanied by the sustained activation of glycogen synthase and inhibition of glycogen phosphorylase in the RG and MG. These results suggest that mammals with a low proportion of SO fibers can also replenish the glycogen stores of their FT fibers under extreme conditions combining physical activity and fasting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: High-intensity short-duration interval training (HIT) stimulates functional and metabolic adaptation in skeletal muscle, but the influence of HIT on mitochondrial function remains poorly studied in humans. Mitochondrial metabolism as well as mitochondrial-associated protein expression were tested in untrained participants performing HIT over a 2-week period. METHODS: Eight males performed a single-leg cycling protocol (12 × 1 min intervals at 120% peak power output, 90 s recovery, 4 days/week). Muscle biopsies (vastus lateralis) were taken pre- and post-HIT. Mitochondrial respiration in permeabilized fibers, citrate synthase (CS) activity and protein expression of peroxisome proliferator-activated receptor gamma coactivator (PGC-1α) and respiratory complex components were measured. RESULTS: HIT training improved peak power and time to fatigue. Increases in absolute oxidative phosphorylation (OXPHOS) capacities and CS activity were observed, but not in the ratio of CCO to the electron transport system (CCO/ETS), the respiratory control ratios (RCR-1 and RCR-2) or mitochondrial-associated protein expression. Specific increases in OXPHOS flux were not apparent after normalization to CS, indicating that gross changes mainly resulted from increased mitochondrial mass. CONCLUSION: Over only 2 weeks HIT significantly increased mitochondrial function in skeletal muscle independently of detectable changes in mitochondrial-associated and mitogenic protein expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Within a controlled laboratory environment, high-intensity interval training (HIT) elicits similar cardiovascular and metabolic benefits as traditional moderate-intensity continuous training (MICT). It is currently unclear how HIT can be applied effectively in a real-world environment. Purpose To investigate the hypothesis that 10 weeks of HIT, performed in an instructor-led, groupbased gym setting, elicits improvements in aerobic capacity (VO2max), cardio-metabolic risk and psychological health which are comparable to MICT. Methods Ninety physically inactive volunteers (42±11 y, 27.7±4.8 kg.m-2) were randomly assigned to HIT or MICT group exercise classes. HIT consisted of repeated sprints (15-60 seconds, >90% HRmax) interspersed with periods of recovery cycling (≥25 min.session-1, 3 sessions. week-1). MICT participants performed continuous cycling (70%HRmax, 30-45 min.session-1, 5 sessions.week-1). VO2max, markers of cardio-metabolic risk, and psychological health were assessed pre and post-intervention. Results Mean weekly training time was 55±10 (HIT) and 128±44 min (MICT) (p<0.05), with greater adherence to HIT (83±14% vs. 61±15% prescribed sessions attended, respectively; p<0.05). HIT improved VO2max, insulin sensitivity, reduced abdominal fat mass, and induced favourable changes in blood lipids (p<0.05). HIT also induced beneficial effects on health perceptions, positive and negative affect, and subjective vitality (p<0.05). No difference between HIT and MICT was seen for any of these variables. Conclusions HIT performed in a real-world gym setting improves cardio-metabolic risk factors and psychological health in physically inactive adults. With a reduced time commitment and greater adherence than MICT, HIT offers a viable and effective exercise strategy to target the growing incidence of metabolic disease and psychological ill-being associated with physical inactivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: High-intensity interval training (HIIT) may be a feasible and efficacious strategy for improving health-related fitness in young people. The objective of this systematic review and meta-analysis was to evaluate the utility of HIIT to improve health-related fitness in adolescents and to identify potential moderators of training effects. METHODS: Studies were considered eligible if they: (1) examined adolescents (13-18 years); (2) examined health-related fitness outcomes; (3) involved an intervention of ≥4 weeks in duration; (4) included a control or moderate intensity comparison group; and (5) prescribed high-intensity activity for the HIIT condition. Meta-analyses were conducted to determine the effect of HIIT on health-related fitness components using Comprehensive Meta-analysis software and potential moderators were explored (ie, study duration, risk of bias and type of comparison group). RESULTS: The effects of HIIT on cardiorespiratory fitness and body composition were large, and medium, respectively. Study duration was a moderator for the effect of HIIT on body fat percentage. Intervention effects for waist circumference and muscular fitness were not statistically significant. CONCLUSIONS: HIIT is a feasible and time-efficient approach for improving cardiorespiratory fitness and body composition in adolescent populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current physical activity and fitness levels among adolescents are low, increasing the risk of chronic disease. Although the efficacy of high intensity interval training (HIIT) for improving metabolic health is now well established, it is not known if this type of activity can be effective to improve adolescent health. The primary aim of this study is to assess the effectiveness and feasibility of embedding HIIT into the school day. A 3-arm pilot randomized controlled trial was conducted in one secondary school in Newcastle, Australia. Participants (n = 65; mean age = 15.8(0.6) years) were randomized into one of three conditions: aerobic exercise program (AEP) (n = 21), resistance and aerobic exercise program (RAP) (n = 22) and control (n = 22). The 8-week intervention consisted of three HIIT sessions per week (8-10 min/session), delivered during physical education (PE) lessons or at lunchtime. Assessments were conducted at baseline and post-intervention to detect changes in cardiorespiratory fitness (multi-stage shuttle-run), muscular fitness (push-up, standing long jump tests), body composition (Body Mass Index (BMI), BMI-z scores, waist circumference) and physical activity motivation (questionnaire), by researchers blinded to treatment allocation. Intervention effects for outcomes were examined using linear mixed models, and Cohen's d effect sizes were reported. Participants in the AEP and RAP groups had moderate intervention effects for waist circumference (p = 0.024), BMI-z (p = 0.037) and BMI (not significant) in comparison to the control group. A small intervention effect was also evident for cardiorespiratory fitness in the RAP group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Emerging literature suggests that physical activity and fitness may have a positive impact on cognitive and mental health for adolescents. The purpose of the current study was to evaluate the efficacy of two high intensity interval training (HIIT) protocols for improving cognitive and mental health outcomes (executive function, psychological wellbeing, psychological distress and physical self-concept) in adolescents.

METHODS: Participants (n=65; mean age=15.8±0.6) were randomized to three conditions: aerobic exercise program (AEP; n=21), resistance and aerobic exercise program (RAP; n=22) and control (n=22). HIIT sessions (8-10min/session) were delivered during physical education lessons or at lunchtime three times/week for 8-weeks. Assessments were conducted at baseline and immediate post-intervention to detect changes in executive function (Trail Making Test, TMT), psychological wellbeing, psychological distress and physical self-description, by researchers blinded to treatment allocation. Intervention effects were examined using linear mixed models. Cohen's d effect sizes and clinical inference were also calculated.

RESULTS: Small improvements in executive function (d=-0.32, 95%CI -9.12 to 9.77; p=0.386) and psychological wellbeing (d=0.34, 95%CI -1.73 to 2.37; p=0.252) were evident in the AEP group. Moderate improvements in executive function (d=-0.51, 95% CI -8.92 to 9.73; p=0.171), and small improvements in wellbeing (d=0.35, 95%CI -1.46 to 2.53; p=0.219) and perceived appearance (d=0.35, 95%CI -0.74 to 0.41; p=0.249), were observed for the RAP group. Mean feelings state scores improved from pre-workout to post-post workout in both HIIT conditions, with significant results for the AEP (p=0.001).

CONCLUSIONS: This study highlights the potential of embedding HIIT within the school day for improving cognitive and mental health among adolescents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim was to investigate whether the addition of supervised high intensity progressive resistance training to a moderate weight loss program (RT+WLoss) could maintain bone mineral density (BMD) and lean mass compared to moderate weight loss (WLoss) alone in older overweight adults with type 2 diabetes. We also investigated whether any benefits derived from a supervised RT program could be sustained through an additional home-based program. This was a 12-month trial in which 36 sedentary, overweight adults aged 60 to 80 years with type 2 diabetes were randomized to either a supervised gymnasium-based RT+WLoss or WLoss program for 6 months (phase 1). Thereafter, all participants completed an additional 6-month home-based training without further dietary modification (phase 2). Total body and regional BMD and bone mineral content (BMC), fat mass (FM) and lean mass (LM) were assessed by DXA every 6 months. Diet, muscle strength (1-RM) and serum total testosterone, estradiol, SHBG, insulin and IGF-1 were measured every 3 months. No between group differences were detected for changes in any of the hormonal parameters at any measurement point. In phase 1, after 6 months of gymnasium-based training, weight and FM decreased similarly in both groups (P<0.01), but LM tended to increase in the RT+WLoss (n=16) relative to the WLoss (n=13) group [net difference (95% CI), 1.8% (0.2, 3.5), P<0.05]. Total body BMD and BMC remained unchanged in the RT+WLoss group, but decreased by 0.9 and 1.5%, respectively, in the WLoss group (interaction, P<0.05). Similar, though non-significant, changes were detected at the femoral neck and lumbar spine (L2-L4). In phase 2, after a further 6 months of home-based training, weight and FM increased significantly in both the RT+WLoss (n=14) and WLoss (n=12) group, but there were no significant changes in LM or total body or regional BMD or BMC in either group from 6 to 12 months. These results indicate that in older, overweight adults with type 2 diabetes, dietary modification should be combined with progressive resistance training to optimize the effects on body composition without having a negative effect on bone health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are 3 distinct yet closely integrated processes that operate together to satisfy the energy requirements of muscle. The anaerobic energy system is divided into alactic and lactic components, referring to the processes  involved in the splitting of the stored phosphagens, ATP and  phosphocreatine (PCr), and the nonaerobic breakdown of carbohydrate to lactic acid through glycolysis. The aerobic energy system refers to the combustion of carbohydrates and fats in the presence of oxygen. The anaerobic pathways are capable of regenerating ATP at high rates yet are limited by the amount of energy that can be released in a single bout of intense exercise. In contrast, the aerobic system has an enormous capacity yet is somewhat hampered in its ability to delivery energy quickly. The focus of this review is on the interaction and relative contribution of the energy systems during single bouts of maximal exercise. A particular emphasis has been placed on the role of the aerobic energy system during high intensity exercise.

Attempts to depict the interaction and relative contribution of the energy systems during maximal exercise first appeared in the 1960s and 1970s. While insightful at the time, these representations were based on calculations of anaerobic energy release that now appear questionable. Given repeated reproduction over the years, these early attempts have lead to 2 common misconceptions in the exercise science and coaching professions. First, that the energy systems respond to the demands of intense exercise in an almost sequential manner, and secondly, that the aerobic system responds slowly to these energy demands, thereby playing little role in determining performance over short durations. More recent research suggests that energy is derived from each of the energy-producing pathways during almost all exercise activities. The duration of maximal exercise at which equal contributions are derived from the anaerobic and aerobic energy systems appears to occur between 1 to 2 minutes and most probably around 75 seconds, a time that is considerably earlier than has traditionally been suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE -- To examine the effect of high-intensity progressive resistance training combined with moderate weight loss on glycemic control and body composition in older patients with type 2 diabetes.

RESEARCH DESIGN AND METHODS -- Sedentary, overweight men and women with type 2 diabetes, aged 60-80 years (n = 36), were randomized to high-intensity progressive resistance training plus moderate weight loss (RT & WL group) or moderate weight loss plus a control program (WL group). Clinical and laboratory measurements were assessed at 0, 3, and 6 months.

RESULTS -- HbA.1c fell significantly more in RT & WL than WL at 3 months (0.6 ± or -] 0.7 vs. 0.07 ± 0.8%, P < 0.05) and 6 months (1.2 ±1.0 vs. 0.4 ±0.8, P < 0.05). Similar reductions in body weight (RT & WL 2.5 ±2.9 vs. WL 3.1±2.1 kg) and fat mass (RT & WL 2.4 ± 2.7 vs. WL 2.7±2.5 kg) were observed after 6 months. In contrast, lean body mass (LBM) increased in the RT & WL group (0.5 ±1.1 kg) and decreased in the WL group (0.4±1.0) after 6 months (P < 0.05). There were no between-group differences for fasting glucose, insulin, serum lipids and lipoproteins, or resting blood pressure.

CONCLUSIONS -- High-intensity progressive resistance training, in combination with moderate weight loss, was effective in improving glycemic control in older patients with type 2 diabetes. Additional benefits of improved muscular strength and LBM identify high-intensity resistance training as a feasible and effective component in the management program for older patients with type 2 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recovery after prolonged or high-intensity exercise is characterised by a substantial increase in adipose tissue lipolysis, resulting in elevated rates of plasma-derived fat oxidation. Despite the large increase in circulating fatty acids (FAs) after exercise, only a small fraction of this is taken up by exercised muscle in the lower extremities. Indeed, the predominant fate of non-oxidised FAs derived from post-exercise lipolysis is reesteriflcation hi the liver. During recovery from endurance exercise, a number of changes also occur hi skeletal muscle that allow for a high metabolic priority towards glycogen resynthesis. Reducing muscle glycogen during exercise potentiates these effects, however the cellular and molecular mechanisms regulating substrate oxidation following exercise remain poorly defined. The broad arm of this thesis was to examine the regulation of fat metabolism during recovery from glycogen-lowering exercise hi the presence of altered fat and glucose availability. In study I, eight endurance-trained males completed a bout of exhaustive exercise followed by ingestion of carbohydrate (CHO)-rich meals (64-70% of energy from CHO) at 1, 4, and 7 h of recovery. Duplicate muscle biopsies were obtained at exhaustion and 3, 6 and 18 h of recovery. Despite the large intake of CHO during recovery (491 ± 28 g or 6.8 + 0.3 g • kg-1), respiratory exchange ratio values of 0.77 to 0.84 indicated a greater reliance on fat as an oxidative fuel. Intramuscular triacylglycerol (IMTG) content remained unchanged in the presence of elevated glucose and insulin levels during recovery , suggesting IMTG has a negligible role in contributing to the enhanced fat oxidation after exhaustive exercise. It appears that the partitioning of exogenous glucose towards glycogen resynthesis is of high metabolic priority during immediate post-exercise recovery, supported by the trend towards reduced pyruvate dehydrogenase (PDH) activity and increased fat oxidation. The effect of altering plasma FA availability during post-exercise recovery was examined in study II. Eight endurance-trained males performed three trials consisting of glycogen-lowering exercise, followed by infusion of either saline (CON), saline + nicotinic acid (NA) (LFA) or Intralipid and heparin (HFA). Muscle biopsies were obtained at the end of exercise (0 h) and at 3 and 6 h in recovery. Altering the availability of plasma FAs during recovery induced changes in whole-body fat oxidation that were unrelated to differences in skeletal muscle malonyl-CoA. Furthermore, fat oxidation and acetyl-CoA carboxylase (ACC) phosphorylation appear to be dissociated after exercise, suggesting mechanisms other than phosphorylation-mediated changes in ACC activity have an important role in regulating malonyl-CoA and fat metabolism in human skeletal muscle after exercise. Alternative mechanisms include citrate and long-chain fatty acyl-CoA mediated changes in ACC activity, or differences in malonyl-CoA decarboxylase (MCD) activity. Reducing plasma FA concentrations with NA attenuated the post-exercise increase in MCD and pyruvate dehydrogenase kinase 4 (PDK4) gene expression, suggesting that FAs and/or other factors induced by NA are involved hi the regulation of these genes. Despite marked changes hi plasma FA availability, no significant changes in IMTG concentration were detected, providing further evidence that plasma-derived FAs are the preferential fuel source contributing to the enhanced fat oxidation post-exercise during recovery. To further examine the effect of substrate availability after exercise, Study III investigated the regulation of fat metabolism during a 6 h recovery period with or without glucose infusion. Enhanced glucose availability significantly increased CHO oxidation compared with the fasted state, although no differences in whole-body fat oxidation were apparent. Consistent with the similar rates of fat metabolism, no difference hi AMPK or ACCβ phosphorylation were observed between trials. In addition, no significant treatment or time effects for IMTG concentration were detected during recovery. The large exercise-induced PDK4 gene expression was attenuated when plasma FAs were reduced during glucose infusion, supporting the hypothesis that PDK4 is responsive to sustained changes in lipid availability and/or changes in plasma insulin. Furthermore, the possibility exists that the suppression of PDK4 mRNA also reduced PDK activity and thus maintained PDH activity to account for the higher rates of CHO oxidation observed during glucose infusion compared with the control trial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is evidence that reactive oxygen species (ROS) signalling is required for normal increases in glucose uptake during contraction of isolated mouse skeletal muscle, and that AMP-activated protein kinase (AMPK) is involved. The aim of this study was to determine whether ROS signalling is involved in the regulation of glucose disposal and AMPK activation during moderate-intensity exercise in humans. Nine healthy males completed 80 min of cycle ergometry at 62 ± 1 of peak oxygen consumption ( . A 6,6-2H-glucose tracer was infused at rest and during exercise, and in a double-blind randomised cross-over design, N-acetylcysteine (NAC) or saline (CON) was co-infused. NAC was infused at 125 mg kg?1h?1for 15 min and then at 25 mg kg?1h?1for 20 min before and throughout exercise. NAC infusion elevated plasma NAC and cysteine, and muscle NAC and cysteine concentrations during exercise. Although neither NAC infusion nor exercise significantly affected muscle reduced or oxidised glutathione (GSH or GSSG) concentration (P> 0.05), S-glutathionylation (an indicator of oxidative stress) of a protein band of ?270 kDa was increased ?3-fold with contraction and this increase was prevented by NAC infusion. Despite this, exercised-induced increases in tracer determined glucose disposal, plasma lactate, plasma non-esterified fatty acids (NEFAs), and decreases in plasma insulin were not affected by NAC infusion. In addition, skeletal muscle AMPK? and acetyl-CoA carboxylase-? (ACC?) phosphorylation increased during exercise by ?3- and ?6-fold (P< 0.05), respectively, and this was not affected by NAC infusion. Unlike findings in mouse muscle ex vivo, NAC does not attenuate skeletal muscle glucose disposal or AMPK activation during moderate-intensity exercise in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glycogen plays a major role in supporting the energy demands of skeletal muscles during high intensity exercise. Despite its importance, the amount of glycogen stored in skeletal muscles is so small that a large fraction of it can be depleted in response to a single bout of high intensity exercise. For this reason, it is generally recommended to ingest food after exercise to replenish rapidly muscle glycogen stores, otherwise one's ability to engage in high intensity activity might be compromised. But what if food is not available? It is now well established that, even in the absence of food intake, skeletal muscles have the capacity to replenish some of their glycogen at the expense of endogenous carbon sources such as lactate. This is facilitated, in part, by the transient dephosphorylation-mediated activation of glycogen synthase and inhibition of glycogen phosphorylase. There is also evidence that muscle glycogen synthesis occurs even under conditions conducive to an increased oxidation of lactate post-exercise, such as during active recovery from high intensity exercise. Indeed, although during active recovery glycogen resynthesis is impaired in skeletal muscle as a whole because of increased lactate oxidation, muscle glycogen stores are replenished in Type IIa and IIb fibers while being broken down in Type I fibers of active muscles. This unique ability of Type II fibers to replenish their glycogen stores during exercise should not come as a surprise given the advantages in maintaining adequate muscle glycogen stores in those fibers that play a major role in fight or flight responses.