107 resultados para hidden Markov model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hierarchical hidden Markov model (HHMM) is an extension of the hidden Markov model to include a hierarchy of the hidden states. This form of hierarchical modeling has been found useful in applications such as handwritten character recognition, behavior recognition, video indexing, and text retrieval. Nevertheless, the state hierarchy in the original HHMM is restricted to a tree structure. This prohibits two different states from having the same child, and thus does not allow for sharing of common substructures in the model. In this paper, we present a general HHMM in which the state hierarchy can be a lattice allowing arbitrary sharing of substructures. Furthermore, we provide a method for numerical scaling to avoid underflow, an important issue in dealing with long observation sequences. We demonstrate the working of our method in a simulated environment where a hierarchical behavioral model is automatically learned and later used for recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we introduce a probabilistic framework to exploit hierarchy, structure sharing and duration information for topic transition detection in videos. Our probabilistic detection framework is a combination of a shot classification step and a detection phase using hierarchical probabilistic models. We consider two models in this paper: the extended Hierarchical Hidden Markov Model (HHMM) and the Coxian Switching Hidden semi-Markov Model (S-HSMM) because they allow the natural decomposition of semantics in videos, including shared structures, to be modeled directly, and thus enabling efficient inference and reducing the sample complexity in learning. Additionally, the S-HSMM allows the duration information to be incorporated, consequently the modeling of long-term dependencies in videos is enriched through both hierarchical and duration modeling. Furthermore, the use of the Coxian distribution in the S-HSMM makes it tractable to deal with long sequences in video. Our experimentation of the proposed framework on twelve educational and training videos shows that both models outperform the baseline cases (flat HMM and HSMM) and performances reported in earlier work in topic detection. The superior performance of the S-HSMM over the HHMM verifies our belief that duration information is an important factor in video content modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considering that the uncertainty noise produced the decline in the quality of collected neural signal, this paper proposes a signal quality assessment method for neural signal. The method makes an automated measure to detect the noise levels in neural signal. Hidden Markov Models were used to build a classification model that classifies the neural spikes based on the noise level associated with the signal. This neural quality assessment measure will help doctors and researchers to focus on the patterns in the signal that have high signal to noise ratio and carry more information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces an approach to cancer classification through gene expression profiles by designing supervised learning hidden Markov models (HMMs). Gene expression of each tumor type is modelled by an HMM, which maximizes the likelihood of the data. Prominent discriminant genes are selected by a novel method based on a modification of the analytic hierarchy process (AHP). Unlike conventional AHP, the modified AHP allows to process quantitative factors that are ranking outcomes of individual gene selection methods including t-test, entropy, receiver operating characteristic curve, Wilcoxon test and signal to noise ratio. The modified AHP aggregates ranking results of individual gene selection methods to form stable and robust gene subsets. Experimental results demonstrate the performance dominance of the HMM approach against six comparable classifiers. Results also show that gene subsets generated by modified AHP lead to greater accuracy and stability compared to competing gene selection methods, i.e. information gain, symmetrical uncertainty, Bhattacharyya distance, and ReliefF. The modified AHP improves the classification performance not only of the HMM but also of all other classifiers. Accordingly, the proposed combination between the modified AHP and HMM is a powerful tool for cancer classification and useful as a real clinical decision support system for medical practitioners.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to learn and recognize human activities of daily living (ADLs) is important in building pervasive and smart environments. In this paper, we tackle this problem using the hidden semi-Markov model. We discuss the state-of-the-art duration modeling choices and then address a large class of exponential family distributions to model state durations. Inference and learning are efficiently addressed by providing a graphical representation for the model in terms of a dynamic Bayesian network (DBN). We investigate both discrete and continuous distributions from the exponential family (Poisson and Inverse Gaussian respectively) for the problem of learning and recognizing ADLs. A full comparison between the exponential family duration models and other existing models including the traditional multinomial and the new Coxian are also presented. Our work thus completes a thorough investigation into the aspect of duration modeling and its application to human activities recognition in a real-world smart home surveillance scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we exploit the discrete Coxian distribution and propose a novel form of stochastic model, termed as the Coxian hidden semi-Makov model (Cox-HSMM), and apply it to the task of recognising activities of daily living (ADLs) in a smart house environment. The use of the Coxian has several advantages over traditional parameterization (e.g. multinomial or continuous distributions) including the low number of free parameters needed, its computational efficiency, and the existing of closed-form solution. To further enrich the model in real-world applications, we also address the problem of handling missing observation for the proposed Cox-HSMM. In the domain of ADLs, we emphasize the importance of the duration information and model it via the Cox-HSMM. Our experimental results have shown the superiority of the Cox-HSMM in all cases when compared with the standard HMM. Our results have further shown that outstanding recognition accuracy can be achieved with relatively low number of phases required in the Coxian, thus making the Cox-HSMM particularly suitable in recognizing ADLs whose movement trajectories are typically very long in nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Permutation modeling is challenging because of the combinatorial nature of the problem. However, such modeling is often required in many real-world applications, including activity recognition where subactivities are often permuted and partially ordered. This paper introduces a novel Hidden Permutation Model (HPM) that can learn the partial ordering constraints in permuted state sequences. The HPM is parameterized as an exponential family distribution and is flexible so that it can encode constraints via different feature functions. A chain-flipping Metropolis-Hastings Markov chain Monte Carlo (MCMC) is employed for inference to overcome the O(n!) complexity. Gradient-based maximum likelihood parameter learning is presented for two cases when the permutation is known and when it is hidden. The HPM is evaluated using both simulated and real data from a location-based activity recognition domain. Experimental results indicate that the HPM performs far better than other baseline models, including the naive Bayes classifier, the HMM classifier, and Kirshner's multinomial permutation model. Our presented HPM is generic and can potentially be utilized in any problem where the modeling of permuted states from noisy data is needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present an application of the hierarchical HMM for structure discovery in educational videos. The HHMM has recently been extended to accommodate the concept of shared structure, ie: a state might multiply inherit from more than one parents. Utilising the expressiveness of this model, we concentrate on a specific class of video -educational videos - in which the hierarchy of semantic units is simpler and clearly defined in terms of topics and its subunits. We model the hierarchy of topical structures by an HHMM and demonstrate the usefulness of the model in detecting topic transitions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EEG signal is one of the most important signals for diagnosing some diseases. EEG is always recorded with an amount of noise, the more noise is recorded the less quality is the EEG signal. The included noise can represent the quality of the recorded EEG signal, this paper proposes a signal quality assessment method for EEG signal. The method generates an automated measure to detect the noise level of the recorded EEG signal. Mel-Frequency Cepstrum Coefficient is used to represent the signals. Hidden Markov Models were used to build a classification model that classifies the EEG signals based on the noise level associated with the signal. This EEG quality assessment measure will help doctors and researchers to focus on the patterns in the signal that have high signal to noise ratio and carry more information. Moreover, our model was applied on an uncontrolled environment and on controlled environment and a result comparison was applied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial activity recognition in everyday environments is particularly challenging due to noise incorporated during video-tracking. We address the noise issue of spatial recognition with a biologically inspired chemotactic model that is capable of handling noisy data. The model is based on bacterial chemotaxis, a process that allows bacteria to survive by changing motile behaviour in relation to environmental dynamics. Using chemotactic principles, we propose the chemotactic model and evaluate its classification performance in a smart house environment. The model exhibits high classification accuracy (99%) with a diverse 10 class activity dataset and outperforms the discrete hidden Markov model (HMM). High accuracy (>89%) is also maintained across small training sets and through incorporation of varying degrees of artificial noise into testing sequences. Importantly, unlike other bottom–up spatial activity recognition models, we show that the chemotactic model is capable of recognizing simple interwoven activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial activity recognition is challenging due to the amount of noise incorporated during video tracking in everyday environments. We address the spatial recognition problem with a biologically-inspired chemotactic model that is capable of handling noisy data. The model is based on bacterial chemotaxis, a process that allows bacteria to change motile behaviour in relation to environmental gradients. Through adoption of chemotactic principles, we propose the chemotactic model and evaluate its performance in a smart house environment. The model exhibits greater than 99% recognition performance with a diverse six class dataset and outperforms the Hidden Markov Model (HMM). The approach also maintains high accuracy (90-99%) with small training sets of one to five sequences. Importantly, unlike other low-level spatial activity recognition models, we show that the chemotactic model is capable of recognising simple interwoven activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a coherent approach using the hierarchical HMM with shared structures to extract the structural units that form the building blocks of an education/training video. Rather than using hand-crafted approaches to define the structural units, we use the data from nine training videos to learn the parameters of the HHMM, and thus naturally extract the hierarchy. We then study this hierarchy and examine the nature of the structure at different levels of abstraction. Since the observable is continuous, we also show how to extend the parameter learning in the HHMM to deal with continuous observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning and understanding the typical patterns in the daily activities and routines of people from low-level sensory data is an important problem in many application domains such as building smart environments, or providing intelligent assistance. Traditional approaches to this problem typically rely on supervised learning and generative models such as the hidden Markov models and its extensions. While activity data can be readily acquired from pervasive sensors, e.g. in smart environments, providing manual labels to support supervised training is often extremely expensive. In this paper, we propose a new approach based on semi-supervised training of partially hidden discriminative models such as the conditional random field (CRF) and the maximum entropy Markov model (MEMM). We show that these models allow us to incorporate both labeled and unlabeled data for learning, and at the same time, provide us with the flexibility and accuracy of the discriminative framework. Our experimental results in the video surveillance domain illustrate that these models can perform better than their generative counterpart, the partially hidden Markov model, even when a substantial amount of labels are unavailable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recognising behaviours of multiple people, especially high-level behaviours, is an important task in surveillance systems. When the reliable assignment of people to the set of observations is unavailable, this task becomes complicated. To solve this task, we present an approach, in which the hierarchical hidden Markov model (HHMM) is used for modeling the behaviour of each person and the joint probabilistic data association filters (JPDAF) is applied for data association. The main contributions of this paper lie in the integration of multiple HHMMs for recognising high-level behaviours of multiple people and the construction of the Rao-Blackwellised particle filters (RBPF) for approximate inference. Preliminary experimental results in a real environment show the robustness of our integrated method in behaviour recognition and its advantage over the use of Kalman filter in tracking people.