50 resultados para heavy metal detection


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary: Copper (Cu), cadmium (Cd), chromium (Cr) nickel (Ni), lead (Pb), Iron (Fe), Manganese (Mn) and zinc (Zn) contents of various vegetables (bitter melon, tomato, eggplant, lettuce, cucumber and bell pepper) produced in Rawalpindi, Pakistan was determined using Atomic absorption spectrophotometer (AAS). These plants are the basis of human nutrition in the study area. All vegetables grown at sewage water by farmers showed the highest contamination of heavy metals, followed by local market, Progressive farmers and hydroponic plant. The concentration ranges in mg/kg were (1.45 -2.55) for Cd, (3.10 to 4.92) Cr, (12.15- 20.50) Cu, (25.00-51.00) for Fe, (7.80 to 15.60) for Mn, (10.16 to 15.42) for Ni, (2.12 to 5.41) Pb and (16.58 to 24.08) for zinc. The contamination was above the Maximum Residue Limits (MRLs), set out by WHO. Irregular trends in concentration were also observed in vegetables obtained from local market, progressive farmers and hydroponic plant.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In water repellent soil, Cr, Pb and Cu showed higher adsorption intensities than Zn, Cd and Ni did. Soil water repellency is much more widespread than formerly thought. In order to promote fertility and productivity, the irrigation of recycled water onto water repellent soil may be an applied technology to be used in some areas of Southern Australia. Therefore, heavy metals in recycled water potentially enter into the soil. The competitive sorption and retention capacity of heavy metals in soil are important to be determined, especially considering the special geochemical origin of water repellent soil that was caused by waxes on or between the soil particles. Batch equilibrium sorption experiments on Cd, Cr, Cu, Ni, Pb and Zn in their typical proportion in recycled water were conducted in water repellent soil. The sorption intensity, sorption isotherm in the experiments together showed that Cr, Pb and Cu have higher sorption intensity than those of Zn, Ni and Cd in the competitive system. The risk assessment for the application of recycled water onto water repellent soil is definitely necessary, especially for the metal cations with relatively weak sorption.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Pieman River catchment has seen continuous mining of economic deposits of gold, silver, lead, copper, zinc and tin since the 1870’s. Tributaries of this river which receive mining effluent, either directly or from acid mine drainage (AMID), have total metal concentrations considerably above background levels and are of regulatory concern. The lower Pieman River is however classified as a State Reserve in which recreational fishing and tourism are the major activities. It is therefore important that water entering the lower Pieman River from upstream hydroelectric impoundments is of high quality. Metals in natural waters exist in a variety of dissolved, colloidal and particulate forms. The bioavailability and hence toxicity of heavy metal pollutants is very dependant on their physico form. Knowledge of the speciation of a metal in natural aquatic environments is therefore necessary for understanding its geochemical behaviour and biological availability. Complexation of metal ions by natural ligands in aquatic systems is believed to play a significant role in controlling their chemical speciation. This study has investigated temporal and spatial variation in complexation of metal ions in the Pieman River. The influence of pH, temperature, organic matter, salinity, ionic strength and time has been investigated in a series of field studies and in laboratory-based experiments which simulated natural and anthropogenic disturbances. Labile metals were measured using two techniques in various freshwater and estuarine environments. Diffusive gradients in thin-films (DGT) allowed in situ measurement of solution speciation whilst differential pulse anodic stripping voltammetry (DPASV) was used to measure labile metal species in water samples collected from the catchment. Organic complexation was found to be a significant regulating mechanism for copper speciation and the copper-binding ligand concentration usually exceeded the total copper concentration in the river water. Complexation was highly dependent on pH and at the river-seawater interface was also regulated by salinity, probably as a result of competitive complexation by major ions in seawater (eg. Ca 2+ ions). Zinc complexation was also evident, however total zinc concentrations in the water column often far exceeded the potential binding capacity of available ligands. In addition to organic complexation, Zn speciation may also be associated with adsorption by flocculated or resuspended colloidal Mn and/or Fe oxyhydroxides. Metal ion complexation and hence speciation was found to be highly variable within the Pieman River catchment. This presents major difficulties for environmental managers, as it is therefore not possible to make catchment-wide assumptions about the bioavailability of these metals. These results emphasise the importance of site-specific sampling protocols and speciation testing, ideally incorporating continuous, in situ monitoring.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A significant number of biosorption studies on the removal of heavy metal from aqueous solutions have been conducted worldwide. Nearly all of them have been directed towards optimizing biosorption parameters to obtain the highest removal efficiency while the rest of them are concerned with the biosorption mechanism. Combinations of FTIR, SEM-EDX, TEM as well as classical methods such as titrations are extremely useful in determining the main processes on the surfaces of biosorbents. Diverse functional groups represented by carboxyl, hydroxyl, sulfate and amino groups play significant roles in the biosorption process. Solution pH normally has a large impact on biosorption performance. In brief, ion exchange and complexation can be pointed out as the most prevalent mechanisms for the biosorption of most heavy metals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Both prokaryotes and eukaryotes express a set of highly conserved proteins in response to external and internal stress. The stressors include tissue trauma,anoxia, heavy metal toxicity, infection, changed salinity, and the mmost characterized, heat shock. The result is an expression of stress proteins or heat shock proteins (HSP's) which lead to protection of protein integrity, and also to tolerance under continued heat stress conditions. The Australian backflip abalone (Haliotis rubra) is found principally in southern coastal water and also in estuarine/bay environments. Esturaine/bay environments have greater fluctuations in environmental conditions, especially those of salinity and water temperature, than they are found along oceanic coasts. Abalone from esturaine/bay and oceanic coastal environments were subjected to either increased temperature (2° C/day for a total of 10°C) or hyposalinity (80% seawater). Esturaine/bay abolone were less affectes than the oceanic animals by temperature increase and also demonstrated the ability to volume regualte 3 h after the initial salinity shock. SDS-PAGE and Western blotting techniques, together with dot blots of total protein, using HSP70 specific antibodies, were used to detect HSP70s in the foot muscle of the animals and indicated an expression of HSP70 in response to heat shock in abalone, but not following hyposalinity shock. RT-PCR yeilded a partial cDNA clone of HSP70 from the foot muscle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A major concern in solvent extraction processes is the loss of extractant into the aqueous phase due to its slight solubility in the aqueous phase. Similarly, in membrane extraction processes, extractant loss through extractant leakage from the membrane into the aqueous phase is also a concern. Several published membrane extraction studies using Aliquat 336 as the extractant, have expressed this concern, but none has studied extractant leakage quantitatively. It is the authors’ opinion that the extractant leakage should be considered as a technical parameter of a membrane. In our laboratory active progress has been made in using Aliquat 336 ‘entangled’ into the polymer membranes to remove heavy metal ions from wastewater samples. In this work, we studied the loss of Aliquat 336 from the point of view of its solubility in aqueous solutions. The results showed that the solubilities of Aliquat 336 in an aqueous phase acidified with 2 M HCl is about 0.1 g/100 m/ of the solution. This figure provides a useful guideline for evaluating the leakage of the Aliquat 336 extractant from the membranes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The burning of brown coal for electricity generation produces thousands of tonnes of fly ash each year. Treatment of the fly ash can reduce leach rates of metals and allow it to be disposed in less prescribed landfill. A geopolymer matrix was investigated as a potential stabilisation method for fly ash obtained from electrostatic precipitators and ash disposal ponds. The ratio of fly ash and geopolymer was varied to determine the effects of different compositions on leaching rates. The major element leachate concentrations obtained from pond ash were lower than that of precipitator fly ash. Conversely, precipitator ash-geopolymers were better for trace heavy metal stabilisation. Effective reduction of elemental concentrations in the leachate has been achieved, particularly for calcium, arsenic, selenium, strontium and barium. Scanning electron microscopy revealed the distribution of metals originated from fly ash and from added geopolymer material. It also showed that some elements are leached from ash particles to the geopolymer phase and others remained as undissolved particles. Qualitative analysis showed that fly ash particles interacted with the geopolymers phase through surface reactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alpaca fibers have some distinct properties such as softness and warmth, which have not been fully understood in combination with the fiber internal structures. In the present investigation, the internal structures of alpaca fibers have been closely examined under the scanning electron microscope (SEM), especially in the longitudinal direction. The results showed that numerous pigment granules reside loosely inside pockets in brown and dark-brown alpaca fibers. These pigment granules were mainly distributed inside the cortical cells, the medullation regions as well as underneath the cuticles. Their size in the brown alpaca fibers was smaller and more uniformly round than in the dark-brown fibers. These granules in colored alpaca fibers loosen the bundle of cortical cells, providing many crannies in the fibers which may contribute to the superior flexibility, warmth and softness of the fibers. Moreover, there are no heavy metal elements found in the granules. The mordant hydrogen peroxide bleaching employed could eliminate the pigment granules and create many nano-volumes for further dyeing of fibers into more attractive colors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Australia is a water-stressed nation and demand on potable water supply is increasing. Consequently water conservation and reuse are increasingly becoming important. Irrigation of recycled wastewater on water repellent soils is a technology that is being trialled as a means of improving crop production and conserving potable supply. However, recycled water contains potentially harmful heavy metals. This paper reports the competitive sorption and desorption of several common heavy metals found in soils collected from a farm located in the south-east of South Australia. The soil from this location is severely water repellent, but some sites were amended with kaolinite clay (Si4Al4O10(OH)8) about 7 and 15 years ago. The metals studied were Cu, Pb, Cd, Cr, Ni, and Zn. Competitive sorption of the metals was distinctly observed. For all heavy metals, the quantity of metal sorbed was higher in amended soil, and there was a strong correlation between the specific sorption to total sorption ratio and the amount of clay in the soil. The sorption intensities varied with metal, Cr, Pb, and Cu having a high sorption tendencies and Zn, Cd, and Ni having comparatively low sorption tendencies. The total sorption capacity for all metals increased in clay-treated soils compared with non-treated soils. On average, clay-amended water repellent soils had a 20–40% increased capacity to adsorb total metals; however, this increase was largely caused by the increased capacities to adsorb Zn, Cd, and Ni. The effect of clay treatment largely enhanced the sorption capacity of relatively weakly adsorbing heavy metals. The implications for using recycled wastewater on the long-term sustainable agro-environmental management of these soils are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zinc homeostasis was investigated in Nostoc punctiforme. Cell tolerance to Zn2+ over 14 days showed that ZnCl2 levels above 22 µM significantly reduced cell viability. After 3 days in 22 µM ZnCl2, ca. 12% of the Zn2+ was in an EDTA-resistant component, suggesting an intracellular localization. Zinquin fluorescence was detected within cells exposed to concentrations up to 37 µM relative to 0 µM treatment. Radiolabeled 65Zn showed Zn2+ uptake increased over a 3-day period, while efflux occurred more rapidly within a 3-h time period. Four putative genes involved in Zn2+ uptake and efflux in N. punctiforme were identified: (i) the predicted Co/Zn/Cd cation transporter, putative CDF; (ii) the predicted divalent heavy-metal cation transporter, putative Zip; (iii) the ATPase component and Fe/Zn uptake regulation protein, putative Fur; and (iv) an ABC-type Mn/Zn transport system, putative zinc ZnuC, ZnuABC system component. Quantitative real-time PCR indicated the responsiveness of all four genes to 22 µM ZnCl2 within 3 h, followed by a reduction to below basal levels after 24 h by putative ZIP, ZnuC, and Fur and a reduction to below basal level after 72 h by putative CDF efflux gene. These results demonstrate differential regulation of zinc transporters over time, indicating a role for them in zinc homeostasis in N. punctiforme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The investigation into humic acid; chemistry examined the effect the extraction technique used to isolate humic material from the sediment had on the chemical/structural composition and yield of the acid; compared the various isolation techniques used in the literature and developed an extraction technique which minimises the solubilisation of the heavy metals from the inorganic sediment and, examined the complexation capacity of humic acids derived from a sediment source in relation to the heavy metal content and extraction technique.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Copper (Cu) is an important heavy metal to be considered in soil contamination, because high concentrations of copper in soil produce toxic effects and may accumulate in plant tissues. In Australia's oldest sewage irrigation farm, located in Werribee, Victoria, soil in the land filtration area is contaminated by Cu. However, Cu content in herbage tissues is in the normal range and has been trending downward since 1979. Therefore, studies on the sorption capacity and sequential extraction of Cu in soil at the Werribee Farm is of significance, not only for better understanding the mechanism of transport, chemical processes, and plant uptake of Cu, but also in providing information for the practical management of sewage farm soils. Methods of combining sorption isotherms with sequential extraction procedures were adopted, and the results showed that the soil in the land filtration area at Werribee Farm has a high sorption capacity for Cu, and distribution coefficients, Kf of Cu, were 629 L kg-1 in surface soils (0-20 cm) and 335 L kg-1 in subsurface soils (20-40 cm). The sequential extraction fractions demonstrate that exchangeable and carbonate fractions are very low, only comprising 3.49 to 5.49% of total copper. The other fractions are also discussed. This characteristic of Cu in soil is related to the low concentration of Cu in plant tissues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Large amounts of Citrus peel (rich in poly-phenolic compounds) are generated as a by-product of the juice processing industry. Development of alternative, higher valued products utilizing peel waste from grapefruit, oranges, Valencia and other citrus fruit would benefit citrus juice processors by providing them with means to profitably process their peel waste and to avoid environmentally hazardous dumping. Citrus peel waste [CPW, comprised of peel, membranes and juice vesicles] contains a high level of polyphenols and has been used for the production of animal feed, single-cell protein, fibre, enzyme(s), immobilization support & bio-sorbent for heavy metal removal. Naringin (a major tri-hydroxy flavonoid glycoside) is available in large amounts in citrus peel, processed juice and can be extracted from citrus peel waste1. The extracted naringin is further hydrolysed by rhamnosidase to produce D-rhamnose for the production of ethanol and other fermentation products. We have produced a recombinant enzyme2 that has the ability to catalyse the cleavage of terminal rhamnoside groups from naringin to prunin and rhamnose. We have recovered important sugar “D-rhamnose” from the processed waste which would be utilized for ethanol production3. This presentation will summarize current efforts to develop an enzymatic treatment which would facilitate the economical processing of citrus waste for bioenergy generation.