41 resultados para grain size and shape


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the grain size on the deformation of Mg–3Al–1Zn was examined in compression at 300 °C. At low strains the flow stress increases with increasing grain size. This is interpreted in terms of dynamic recrystallization. Empirical models of dynamic recrystallization are developed and employed to generate a microstructure map.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of grain size on the deformation of extruded Mg-3Al-1Zn tested in tension at temperatures between room temperature and 300°C is investigated. The results enable estimation of the deformation conditions for the transition from slip to twinning dominated flow and for the initiation and completion of dynamic recrystallization. A map illustrating these critical parameters is constructed and it is shown that the operating conditions of the common wrought processes straddle key transitions in microstructure behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper examines the development of grain size during the recrystallization of magnesium alloys and the influence the grain size has on the mechanical response. In magnesium alloys grain refinement improves the strength-ductility balance. This simultaneous increase in both strength and ductility is ascribed to the impact the grain size has on deformation twinning. The mechanisms by which the grain size is established during hot working are shown to be conventional dynamic recrystallization followed by post-dynamic recrystallization. The role of alloying additionon both of these reactions is briefly considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rod rolling is a process where the deformation state of the workpiece between the work rolls is quite different from the strip rolling process. However, in most microstructure evolution models, the simple area strains (natural logarithm of the area reduction ratio) multiplied by a constant have been used to compute pass-by-pass evolution of austenite grain size (AGS) in rod (or bar) rolling, without any verification. The strains at a given pass play a crucial role in determining the recrystallization behavior (static or dynamic). In this study, an analytical model that calculates the pass-by-pass strain and strain rate in rod rolling has been developed and verified by conducting four-pass (oval–round) bar and plate rolling experiments. Numerical simulations have then been carried out for the four-pass rolling sequence using the area strain model and the new analytical model, focusing on the effect of the method for calculating the strain on the recrystallization behavior and evolution of AGS. The AGS predicted was compared with those obtained from hot torsion tests. It is shown that the analytical model developed in this study is more appropriate in the analysis of bar (or rod) rolling. It was found that the recrystallization behavior and evolution of AGS during this process were influenced significantly by the calculation method for the deformation parameters (strain and strain rate). The pass-by-pass strain obtained from the simple area strain model is inadequate to be used as an input to the equations for recrystallization and AGS evolution under these rolling conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data collection contains several optical microstructure images, EBSD maps and stress-strain curves. The research involves collecting data from samples with different grain sizes at several values of plastic strains to measure some important twinning parameters such as twin volume fraction and number of twins per grain. The aim of this study is to investigate the effect of grain size on deformation twinning behaviour in two hcp metals i.e. commercial purity titanium and AZ31 magnesium alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mg-Zn binary alloys with concentrations between 0 and 2.8wt% Zn have been prepared and processed via hot rolling and annealing to produce specimens with a strong basal texture and a range of grain sizes. These have been deformed in tension, a condition in which the deformation is dominated by prismatic slip. This data has been used to assess the Hall-Petch parameter as a function of Zn concentration for deformation dominated by prismatic slip. Pure magnesium showed non-linear Hall-Petch behaviour at large grain sizes, and this is compared to the values for prismatic slip measured on single crystals. The differences between critical resolved shear stress measurements made through single crystal, polycrystal and mathematical modelling techniques are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In ultrafine-grained (UFG) materials produced by severe plastic deformation (SPD) techniques such as ECAP (equal channel angular pressing), bimodal grain size distributions have been observed under different circumstances, for example shortly after ECAP, after rest or anneal and/or after mild cyclic deformation at rather low homologous temperature. It has been shown that the mechanical monotonic and fatigue properties of some UFG materials can be modified (sometimes enhanced) by introducing a bimodal grain size distribution by a mild annealing treatment which leads, in some cases, to a good combination of strength and ductility. Here, the conditions under which bimodal grain size distributions evolve by (adiabatic) heating during ECAP and during subsequent annealing or cyclic deformation will be explored, and the effects on the mechanical properties, as studied by the authors and as reported so far in the literature, will be reviewed and discussed. In particular, the role of temperature rise during ECAP will be considered in some detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As muscles become larger and stronger during growth and in response to increased loading, bones should adapt by adding mass, size, and strength. In this unilateral model, we tested the hypothesis that (1) the relationship between muscle size and bone mass and geometry (nonplaying arm) would not change during different stages of puberty and (2) exercise would not alter the relationship between muscle and bone, that is, additional loading would result in a similar unit increment in both muscle and bone mass, bone size, and bending strength during growth. We studied 47 competitive female tennis players aged 8–17 years. Total, cortical, and medullary cross-sectional areas, muscle area, and the polar second moment of area (Ip) were calculated in the playing and nonplaying arms using magnetic resonance imaging (MRI); BMC was assessed by DXA. Growth effects: In the nonplaying arm in pre-, peri- and post-pubertal players, muscle area was linearly associated BMC, total and cortical area, and Ip (r = 0.56–0.81, P < 0.09 to < 0.001), independent of age. No detectable differences were found between pubertal groups for the slope of the relationship between muscle and bone traits. Post-pubertal players, however, had a higher BMC and cortical area relative to muscle area (i.e., higher intercept) than pre- and peri-pubertal players (P < 0.05 to < 0.01), independent of age; pre- and peri-pubertal players had a greater medullary area relative to muscle area than post-pubertal players (P < 0.05 to < 0.01). Exercise effects: Comparison of the side-to-side differences revealed that muscle and bone traits were 6–13% greater in the playing arm in pre-pubertal players, and did not increase with advancing maturation. In all players, the percent (and absolute) side-to-side differences in muscle area were positively correlated with the percent (and absolute) differences in BMC, total and cortical area, and Ip (r = 0.36–0.40, P < 0.05 to < 0.001). However, the side-to-side differences in muscle area only accounted for 11.8–15.9% of the variance of the differences in bone mass, bone size, and bending strength. This suggests that other factors associated with loading distinct from muscle size itself contributed to the bones adaptive response during growth. Therefore, the unifying hypothesis that larger muscles induced by exercise led to a proportional increase in bone mass, bone size, and bending strength appears to be simplistic and denies the influence of other factors in the development of bone mass and bone shape.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of grain size on the warm deformation behaviour of a titanium stabilized interstitial free (IF) steel was investigated using hot torsion. The initial work hardening regime is followed by the development of a broad stress peak after which work softening occurs. The hypothetical saturation stress (Estrin–Mecking model) and the stress at final strain were relatively insensitive to grain size. However, the strain to the peak stress was strongly dependent on the grain size at low values of the Zener–Hollomon parameter. A simple phenomenological approach, using a combined Estrin–Mecking model and an Avrami type equation, was used to model the flow curves. The hypothetical saturation stress, the stress at final strain and the strain to peak stress were modelled using three different hyperbolic sine laws. A comparison with independent data from the literature shows that the apparent activation energy of deformation determined in this work (Q=372 kJ/mol) can be used to rationalize the steady-state stress in compression data found in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the austenite grain size (AGS) for hot bar rolling of AISI4135 steel was predicted based on two different AGS evolution models available in the literature. In order to predict the AGS more accurately, both models were integrated with a three-dimensional non-isothermal finite element program by implementing a modified additivity rule. The predicted results based on two models for the square-diamond (S-D) and round-oval (R-O) pass bar rolling processes were compared with the experimental data available in the literature. Then, numerical predictions depending on various process parameters such as interpass time, temperature, and roll speed were made to compare both models and investigate the effect of these parameters on the AGS distributions. Such numerical results were found to be beneficial to understand the effect of the microstructure evolution model on the rolling processes better and control the processes more accurately.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the local distribution of austenite grain size (AGS) was experimentally determined by conducting single round-oval and square-diamond pass hot bar rolling experiments of AISI4135 steel. The rolling experiments were carried out using the laboratory mill. The local distribution of AGS was also determined numerically. In order to predict AGS distribution, the AGS evolution model was combined with three dimensional non-isothermal finite element analyses by adopting a modified additivity rule. AGS evolution model was experimentally determined from hot torsion test according to Hodgson's model. The predicted results were in a reasonably good agreement with experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of initial grain size on the recrystallization behavior of a type 304 austenitic stainless steel during and following hot deformation was investigated using hot torsion. The refinement of the initial grain size to 8 μm, compared with an initial grain size of 35 μm, had considerable effects on the dynamic recrystallization (DRX) and post-DRX phenomena. For both DRX and post-DRX, microstructural investigations using electron backscattered diffraction confirmed an interesting transition from conventional (discontinuous) to continuous DRX with a decrease in the initial grain size. Also, there were unexpected effects of initial grain size on DRX and post-DRX grain sizes.