79 resultados para equine influenza (EI)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extent to which CD8+ T cells specific for other antigens expand to compensate for the mutational loss of the prominent DbNP366 and DbPA224 epitopes has been investigated using H1N1 and H3N2 influenza A viruses modified by reverse genetics. Significantly increased numbers of CD8+ KbPB1703+ , CD8+ KbNS2114+, and CD8+ DbPB1-F262+ T cells were found in the spleen and in the inflammatory population recovered by bronchoalveolar lavage from mice that were first given the -NP-PA H1N1 virus intraperitoneally and then challenged intranasally with the homologous H3N2 virus. The effect was less consistent when this prime-boost protocol was reversed. Also, though the quality of the response measured by cytokine staining showed some evidence of modification when these minor CD8+-T-cell populations were forced to play a more prominent part, the effects were relatively small and no consistent pattern emerged. The magnitude of the enhanced clonal expansion following secondary challenge suggested that the prime-boost with the -NP-PA viruses gave a response overall that was little different in magnitude from that following comparable exposure to the unmanipulated viruses. This was indeed shown to be the case when the total response was measured by ELISPOT analysis with virus-infected cells as stimulators. More surprisingly, the same effect was seen following primary challenge, though individual analysis of the CD8+ KbPB1703+ , CD8+ KbNS2114+, and CD8+ DbPB1-F262+ sets gave no indication of compensatory expansion. A possible explanation is that novel, as yet undetected epitopes emerge following primary exposure to the -NP-PA deletion viruses. These findings have implications for both natural infections and vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Influenza A virus infection of C57BL/6 (B6) mice is characterized by prominent CD8 T cell responses to H2Db complexed with peptides from the viral nucleoprotein (NP366, ASNENMETM) and acid polymerase (PA224, SSLENFRAYV). An in vivo cytotoxicity assay that depends on the adoptive transfer of peptide-pulsed, syngeneic targets was used in this study to quantitate the cytotoxic potential of DbNP366- and DbPA224-specific acute and memory CD8 T cells following primary or secondary virus challenge. Both T cell populations displayed equivalent levels of in vivo effector function when comparable numbers were transferred into naive B6 hosts. Cytotoxic activity following primary infection clearly correlated with the frequency of tetramer-stained CD8 T cells. This relationship looked, however, to be less direct following secondary exposure, partly because the numbers of CD8DbNP366 T cells were greatly in excess. However, calculating the in vivo E:T ratios indicated that in vivo lysis, like many other biological functions, is threshold dependent. Furthermore, the capacity to eliminate peptide-pulsed targets was independent of the differentiation state (i.e., primary or secondary effectors) and was comparable for the two T cell specificities that were analyzed. These experiments provide insights that may be of value for adoptive immunotherapy, where careful consideration of both the activation state and the number of effector cells is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antigen-specific CD8+ T cells play an important role in virus clearance. Here we review the current understanding of influenza virus-specific CD8+ T cell immunity in experimental mouse models and humans. The characteristics and nature of CD8+ T cell killing are discussed, as is the selection and maintenance of the influenza-specific effector and memory repertoires. Consideration is given to vaccine strategies and to the effects of ageing. Understanding the complexities of CD8+ T cell mediated immunity and memory has the potential for improving vaccine design, particularly to combat pandemics caused by newly emerging influenza viruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Influenza virus-specific CD8+ T cells generally recognize peptides derived from conserved, internal proteins that are not subject to antibody-mediated selection pressure. Prior exposure to any one influenza A virus (H1N1) can prime for a secondary CD8+ T cell response to a serologically different influenza A virus (H3N2). The protection afforded by this recall of established CD8+ T cell memory, although limited, is not negligible. Key characteristics of primary and secondary influenza-specific host responses are probed here with recombinant viruses expressing modified nucleoprotein (NP) and acid polymerase (PA) genes. Point mutations were introduced into the epitopes derived from the NP and PA such that they no longer bound the presenting H2Db MHC class I glycoprotein, and reassortant H1N1 and H3N2 viruses were made by reverse genetics. Conventional (C57BL/6J, H2b, and Ig+/+) and Ig-/- (muMT) mice were more susceptible to challenge with the single NP [HKx31 influenza A virus (HK)-NP] and PA (HK-PA) mutants, but unlike the Ig-/- mice, Ig+/+ mice were surprisingly resistant to the HK-NP/-PA double mutant. This virus was found to promote an enhanced IgG response resulting, perhaps, from the delayed elimination of antigen-presenting cells. Antigen persistence also could explain the increase in size of the minor KbPB1703 CD8+ T cell population in mice infected with the mutant viruses. The extent of such compensation was always partial, giving the impression that any virus-specific CD8+ T cell response operates within constrained limits. It seems that the relationship between protective humoral and cellular immunity is neither simple nor readily predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent demand for increased understanding of avian influenza virus in its natural hosts, together with the development of high-throughput diagnostics, has heralded a new era in wildlife disease surveillance. However, survey design, sampling, and interpretation in the context of host populations still present major challenges. We critically reviewed current surveillance to distill a series of considerations pertinent to avian influenza virus surveillance in wild birds, including consideration of what, when, where, and how many to sample in the context of survey objectives. Recognizing that wildlife disease surveillance is logistically and financially constrained, we discuss pragmatic alternatives for achieving probability-based sampling schemes that capture this host-pathogen system. We recommend hypothesis-driven surveillance through standardized, local surveys that are, in turn, strategically compiled over broad geographic areas. Rethinking the use of existing surveillance infrastructure can thereby greatly enhance our global understanding of avian influenza and other zoonotic diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transmission dynamics of infectious diseases critically depend on reservoir hosts, which can sustain the pathogen (or maintain the transmission) in the population even in the absence of other hosts. Although a theoretical foundation of the transmission dynamics in a multi-host population has been established, no quantitative methods exist for the identification of natural reservoir hosts. For a host to maintain the transmission alone, the host-specific reproduction number (U), interpreted as the average number of secondary transmissions caused by a single primary case in the host(s) of interest in the absence of all other hosts, must be greater than unity. If the host-excluded reproduction number (Q), representing the average number of secondary transmissions per single primary case in other hosts in the absence of the host(s) of interest, is below unity, transmission cannot be maintained in the multi-host population in the absence of the focal host(s).

The present study proposes a simple method for the identification of reservoir host(s) from observed endemic prevalence data across a range of host species. As an example, we analyze an aggregated surveillance dataset of influenza A virus in wild birds among which dabbling ducks exhibit higher prevalence compared to other bird species. Since the heterogeneous contact patterns between different host species are not directly observable, we test four different contact structures to account for the uncertainty. Meeting the requirements of U > 1 and Q < 1 for all four different contact structures, mallards and other dabbling ducks most likely constitute the reservoir community which plays a predominant role in maintaining the transmission of influenza A virus in the water bird population. We further discuss epidemiological issues which are concerned with the interpretation of influenza prevalence data, identifying key features to be fully clarified in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is increasingly acknowledged that migratory birds, notably waterfowl, play a critical role in the maintenance and spread of influenza A viruses. In order to elucidate the epidemiology of influenza A viruses in their natural hosts, a better understanding of the pathological effects in these hosts is required. Here we report on the feeding and migratory performance of wild migratory Bewick's swans (Cygnus columbianus bewickii Yarrell) naturally infected with low-pathogenic avian influenza (LPAI) A viruses of subtypes H6N2 and H6N8. Using information on geolocation data collected from Global Positioning Systems fitted to neck-collars, we show that infected swans experienced delayed migration, leaving their wintering site more than a month after uninfected animals. This was correlated with infected birds travelling shorter distances and fuelling and feeding at reduced rates. The data suggest that LPAI virus infections in wild migratory birds may have higher clinical and ecological impacts than previously recognised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sialic acids (SA) usually linked to galactose (Gal) in an α2,6- or α2,3-configuration are considered the main cell receptors for influenza viruses, in particular for their hemagglutinins (HA). The typing of influenza virus HA receptor selectivity is relevant for understanding the transmissibility of avian and swine viruses to the human population. In this study we developed a simple and inexpensive gel-capture assay (GCA) of the influenza virus HA receptor-binding selectivity. Its principle is the binding of soluble influenza virus to pentasaccharide analogs, representatives of receptors of human and avian influenza viruses, immobilized on a gel resin. The human and avian analogs consisted of a sialyllactose-N-tetraose c (LSTc) [Neu5Ac(α2,6)Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc] and a sialyllactose-N-tetraose a (LSTa) [Neu5Ac(α2,3)Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc], respectively. Following equilibration, the unbound virus is washed away and the bound one is assayed via HA by densitometry as a function of the analog concentration. Using GCA, the receptor selectivity of three influenza viruses of different HA subtype was investigated. The results showed that the egg-adapted A/California/07/2009 (H1N1) virus exhibited an avian α2,3-linked LSTa selectivity, however, it retained the ability to bind to the α2,6-linked LSTc human receptor analog. Influenza B virus B/Florida/4/2006 showed α2,6-linked LSTc selectivity and a poor α2,3-linked LSTa avidity. The H3N2 virus A/Wisconsin/15/2009 displayed almost comparable avidity for both receptor analogs with a marginally greater α2,3-linked LSTa avidity. The described assay protocol provides a simple and rapid method for the characterization of influenza virus HA receptor binding selectivity. Keywords: influenza virus; hemagglutinin; receptor; sialyllactose-N-tetraose; gel-capture assay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review our current knowledge of the epidemiology and ecology of avian influenza viruses (AIVs) in Australia in relation to the ecology of their hosts. Understanding the transmission and maintenance of low-pathogenic avian influenza (LPAI) viruses deserves scientific scrutiny because some of these may evolve to a high-pathogenic AIV (HPAI) phenotype. That the HPAI H5N1 has not been detected in Australia is thought to be a result of the low level of migratory connectivity between Asia and Australia. Some AIV strains are endemic to Australia, with Australian birds acting as a reservoir for these viruses. However, given the phylogenetic relationships between Australian and Eurasian strains, both avian migrants and resident birds within the continent must play a role in the ecology and epidemiology of AIVs in Australia. The extent to which individual variation in susceptibility to infection, previous infections, and behavioural changes in response to infection determine AIV epidemiology is little understood. Prevalence of AIVs among Australian avifauna is apparently low but, given their specific ecology and Australian conditions, prevalence may be higher in little-researched species and under specific environmental conditions.