72 resultados para energy efficiency


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Wireless sensor networks (WSN) are attractive for information gathering in large-scale data rich environments. Emerging WSN applications require dissemination of information to interested clients within the network requiring support for differing traffic patterns. Further, in-network query processing capabilities are required for autonomic information discovery. In this paper, we formulate the information discovery problem as a load-balancing problem, with the combined aim being to maximize network lifetime and minimize query processing delay. We propose novel methods for data dissemination, information discovery and data aggregation that are designed to provide significant QoS benefits. We make use of affinity propagation to group "similar" sensors and have developed efficient mechanisms that can resolve both ALL-type and ANY-type queries in-network with improved energy-efficiency and query resolution time. Simulation results prove the proposed method(s) of information discovery offer significant QoS benefits for ALL-type and ANY-type queries in comparison to previous approaches.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Medium access control for wireless sensor networks has been an active
research area in the past decade. This chapter discusses a set of important medium access control (MAC) attributes and possible design trade-offs in protocol design, with an emphasis on energy efficiency. Then we categorize existing MAC protocols into five groups, outline the representative protocols, and compare their advantages and disadvantages in the context of wireless sensor network. Finally, thoughts for practitioners are presented and open research issues are also discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Water shortage is a major problem facing the power industry in many nations around the world. The largest consumer of water in most power plants is the wet cooling tower. To assist water and energy saving for thermal power stations using conventional evaporative wet cooling towers, a hybrid cooling system is proposed in this paper. The hybrid cooling system may consists of all or some of an air pre-cooler, heat pump, heat exchangers, and adsorption chillers together with the existing cooling tower. The hybrid cooling system described in the paper, consisting of a metal hydride heat pump operating in conjunction with the existing wet cooling tower, is capable of achieving water saving by reducing the temperature of warm water entering the cooling tower. Cooler inlet water temperatures effectively reduce the cooling load on existing towers. This will ultimately reduce the amount of water lost to the air by evaporation whilst still achieving the same cooling output. At the same time, the low grade waste energy upgraded by the metal hydride heat pump, in the process of cooling the water, can be used to replace the bleed of steam for the lower stage feed heaters which will increase overall cycle efficiency.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cloud computing is offering utility-oriented IT services to users worldwide. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, data centers hosting Cloud applications consume huge amounts of energy, contributing to high operational costs and carbon footprints to the environment. Therefore, we need Green Cloud computing solutions that can not only save energy for the environment but also reduce operational costs. This paper presents vision, challenges, and architectural elements for energy-efficient management of Cloud computing environments. We focus on the development of dynamic resource provisioning and allocation algorithms that consider the synergy between various data center infrastructures (i.e., the hardware, power units, cooling and software), and holistically work to boost data center energy efficiency and performance. In particular, this paper proposes (a) architectural principles for energy-efficient management of Clouds; (b) energy-efficient resource allocation policies and scheduling algorithms considering quality-of-service expectations, and devices power usage characteristics; and (c) a novel software technology for energy-efficient management of Clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The building sector consumes around 30–40 per cent of the primary energy in most developed countries. The importance of labelling buildings as a national strategy for energy efficiency is well recognized worldwide. The last 10–15 years have seen an emergence of programmes in different parts of the world. As seen in the United States, European Union, South America and Asia, there is a collection of rating systems or tools internationally, designed with the intention of evaluating the design, construction and operation of buildings. This study presents an overview and critical reflection on the progress on building energy labelling techniques in recent years. The scope of labelling, methodology and methods of implementation are discussed in detail.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Previous studies on residential energy end use behavior reported significant reduction in energy end use of 7% to 24% when feedback is used to modify behavior in an energy efficient manner. However, most feedback systems investigated in previous studies have not benefited from advanced information systems (IS). IS can shape energy efficiency behavior by providing real-time feedback on energy consumption, cost and environmental impact. Such systems represent a new and less-researched subfield of energy informatics. This paper provides a conceptual framework for showing the potential use of IS to modify residential energy use behavior towards better energy efficiency. The framework builds on research in residential energy end use, in particular energy end use behavioral model. It provides conceptual inputs for a blue-print to develop a residential energy management information system (REMIS) and also highlights the use of new information and communications technologies (ICT) that had not been widely used, setting the grounds for further research in this area.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper focuses on a novel piezoelectric energy harvester for nanofiber PVDF to capture energy from vibration environment. A Resembling CMOS(R-CMOS) circuit consisting of two pMOS transistors and two nMOS transistors is presented, which can greatly increase the energy efficiency and reduce the power dissipation tremendously. Meanwhile, the novel harvester supplies smooth direct current. Simulation result of MULTISIM has shown that by using this novel piezoelectric energy harvester the input voltage (5v) can be rectified to be an output voltage (4.24v). The voltage conversion rate of the novel harvester is as high as 84.8% which is much larger than the rate of traditional rectifier circuit. Its potential application is in micro sensors, wireless transducers, and sensor networks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Improving energy efficiency is an important target to be achieved in residential building development and household behaviour. The aim of this research is to help building professionals and policy makers understand the current housing situations and householders’ behaviour regarding energy consumption. The results of a survey of energy consumption, including house situations and householder behaviour, of 504 households in New South Wales Australia are reported. Twelve features affecting household energy consumption are investigated. These features included cooking appliances, refrigerators, laundry appliances, televisions, computers, gaming consoles, hot water systems, space cooling and heating systems, glazing, insulation, lighting, and other major energy consumption facilities. The differences of these features across different households with different physical characteristics, social-demographic features and geographical areas are analyzed. Based on the disaggregate study, it is found that mandatory policy, geographical and socio-economic factors can significantly affect the selection of fixtures and appliances in the households. It is also found that the positive effect of the government’s mandatory policy implementation on household energy consumption behaviour is evidenced. The findings will be of use in sustainable residential building development policy-making, and tailoring the regulations and standards with consideration of the various geographical and socio-economic factors.