29 resultados para electrical conductivity of poly(p-phenylene sulfide)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In areas of Australia where viticultural operations have been limited by lack of an acceptable irrigation water source, considerable expansion has occurred through the use of recycled wastewater. Despite this rapid expansion, little is known of the potential impacts of the water’s chemical constituents on soil properties, or the long-term sustainability of the vineyards using the water. In order to establish the impacts of drip irrigated recycled wastewater on a vineyard in Great Western, Australia, a study comparing the soils from the vineyard inter-row and row area was undertaken. Chemical and physical properties of the soil with varying distances from the drip emitter were also investigated. During the irrigation season, significant differences between the inter-row and row area were found for several chemical parameters including pH(1:5soil/water) (P<0.001), electrical conductivity (EC1:5) (P<0.001), water-soluble sodium (WS Na+) (P<0.001), and water-soluble chloride (WS Cl-) (P<0.001). This paper will discuss differences observed between soil properties of the inter-row and vine row area, as well as the spatial distribution of solutes under the drip emitter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of the glass transition temperature (Tg) and free volume behaviour of poly(acrylonitrile) (PAN) and PAN/lithium triflate (LiTf), with varying salt composition from 10 to 66 wt% LiTf, were made by positron annihilation lifetime spectroscopy (PALS). Addition of salt from 10 to 45 wt% LiTf resulted in an increase in the mean free volume cavity size at room temperature (r.t.) as measured by the orthoPositronium (oPs) pickoff lifetime, τ3, with little change in relative concentration of free volume sites as measured by oPs pickoff intensity, I3. The region from 45 to 66 wt% salt displayed no variation in relative free volume cavity size and concentration. This salt concentration range (45 wt%<[LiTf]<66 wt%) corresponds to a region of high ionic conductivity of order 10−5 to 10−6 S cm−1 at Tg as measured by PALS. A percolation phenomenon is postulated to describe conduction in this composition region. Salt addition was shown to lower the Tg as measured by PALS; Tg was 115°C for PAN and 85°C for PAN/66 wt% LiTf. The Tg and free volume behaviour of this polymer-in-salt electrolyte (PISE) was compared to a poly(ether urethane)/LiClO4 where the polymer is the major component, i.e. traditional solid polymer electrolyte (SPE). In contrast to the PISE, the Tg of the SPE was shown to increase with increasing salt concentration from 5.3 to 15.9 wt%. The relative free volume cavity size and concentration at r.t. were shown to decrease with increasing salt concentration. Ionic conductivity in this SPE was of order 10−5 S cm−1 at r.t., which is over 60°C above Tg, 10−8 S cm−1 at 25°C above Tg, and conductivity was not measurable at Tg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New polymer electrolytes were synthesized and characterized based on a new polymer host. The motivation was to produce a host polymer with a high dielectric constant which should reduce ion clustering with an attendant increased conductivity. The new polymer host, poly(diethylene glycol carbonate) and its sodium triflate complexes were characterized by thermal analysis and AC impedance measurements. The polycarbonate backbone appears less flexible than the polyether hosts as evidenced by the higher glass transition temperatures. The conductivity for the sodium triflate complexes was measured as ~ 10−5 S cm−1 at 55 °C and the dielectric constant of the host polymer was found to be 3.6 at 3 GHz. The low conductivity is attributed to rigidity of the polycarbonate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have prepared polymer gel electrolytes with alkali metal ionic liquids (AMILs) that inherently contain alkali metal ions. The AMIL consisted of sulfate anion, imidazolium cation, and alkali metal cation. AMILs were mixed directly with poly(3-sulfopropyl acrylate) lithium salt or poly(2-acrylamido-2-methylpropanesulfonic acid) lithium salt to form polymer gels. The ionic conductivity of these gels decreased with increasing polymer fraction, as in general ionic liquid/polymer mixed systems. At low polymer concentrations, these gels displayed excellent ionic conductivity of 10−4 to 10−3 S cm−1 at room temperature. Gelation was found to cause little change in the 7Li diffusion coefficient of the ionic liquid, as measured by pulse-field-gradient NMR. These data strongly suggest that the lithium cation migrates in successive pathways provided by the ionic liquids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study characterizes BaCo0.7Fe0.2Nb0.1O3−δ (BCFN) perovskite oxide and evaluates it as a potential cathode material for proton-conducting SOFCs with a BaZr0.1Ce0.7Y0.2O3-δ (BZCY) electrolyte. A four-probe DC conductivity measurement demonstrated that BCFN has a modest electrical conductivity of 2–15 S cm−1 in air with p-type semiconducting behavior. An electrical conductivity relaxation test showed that BCFN has higher Dchem and Kchem than the well-known Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxide. In addition, it has relatively low thermal expansion coefficients (TECs) with values of 18.2 × 10−6 K−1 and 14.4 × 10−6 K−1 at temperature ranges of 30–900 °C and 30–500 °C, respectively. The phase reaction between BCFN and BZCY was investigated using powder and pellet reactions. EDX and XRD characterizations demonstrated that BCFN had lower reactivity with the BZCY electrolyte than strontium-containing perovskite oxides such as SrCo0.9Nb0.1O3-δ and Ba0.6Sr0.4Co0.9Nb0.1O3−δ. The impedance of BCFN was oxygen partial pressure dependent. Introducing water into the cathode atmosphere reduced the size of both the high-frequency and low-frequency arcs of the impedance spectra due to facilitated proton hopping. The cathode polarization resistance and overpotential at a current density of 100 mA cm−2 were 0.85 Ω cm−2 and 110 mV in dry air, which decreased to 0.43 Ω cm−2 and 52 mV, respectively, in wet air (∼3% H2O) at 650 °C. A decrease in impedance was also observed with polarization time; this was possibly caused by polarization-induced microstructure optimization. A promising peak power density of ∼585 mW cm−2 was demonstrated by an anode-supported cell with a BCFN cathode at 700 °C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two emergent macrophytes, Arundo donax and Phragmites australis, were established in experimental horizontal subsurface flow (HSSF), gravel-based constructed wetlands (CWs) and challenged by treated dairy processing factory wastewater with a median electrical conductivity of 8.9 mS cm−1. The hydraulic loading rate was tested at 3.75 cm day−1. In general, the plants grew well during the 7-month study period, with no obvious signs of salt stress. The major water quality parameters monitored (biological oxygen demand (BOD), suspended solids (SS) and total nitrogen (TN) but not total phosphorus) were generally improved after the effluent had passed through the CWs. There was no significance different in removal efficiencies between the planted beds and unplanted gravel beds (p > 0.007), nor was there any significant difference in removal efficiencies between the A. donax and P. australis beds for most parameters. BOD, SS and TN removal in the A. donax and P. australis CWs was 69, 95 and 26 % and 62, 97 and 26 %, respectively. Bacterial removal was observed but only to levels that would allow reuse of the effluent for use on non-food crops under Victorian state regulations. As expected, the A. donax CWs produced considerably more biomass (37 ± 7.2 kg wet weight) than the P. australis CWs (11 ± 1.4 kg wet weight). This standing crop equates to approximately 179 and 68 tonnes ha−1 year−1 biomass (dry weight) for A. donax and P. australis, respectively (assuming a 250-day growing season and single-cut harvest). The performance similarity of the A. donax and P. australis planted CWs indicates that either may be used in HSSF wetlands treating dairy factory wastewater, although the planting of A. donax provides additional opportunities for secondary income streams through utilisation of the biomass produced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene's excellent electrical conductivity benefits from its highly conjugated structure. Therefore, the manipulation of graphene's electronic and mechanical properties should be realized by controlled destruction of its in-sheet conjugation. Here, we r

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A robust, electrically conductive, superamphiphobic fabric was prepared by vapour-phase polymerisation of 3,4-ethylenedioxythiophene (EDOT) on fabric in the presence of fluorinated decyl polyhedral oligomeric silsesquioxane (FD-POSS) and a fluorinated alkyl silane (FAS). The coated fabric had contact angles of 169° and 156° respectively to water and hexadecane, and a surface resistance in the range of 0.8–1.2 kΩ o⁻¹ . The incorporation of FD-POSS and FAS into the PEDOT layer showed a very small influence on the conductivity but improved the washing and abrasion stability considerably. The coated fabric can withstand at least 500 cycles of standard laundry and 10000 cycles of abrasion without apparently changing the superamphiphobicity, while the conductivity only had a small reduction after the washing and abrasion. More interestingly, the coating had a self-healing ability to auto-repair from chemical damages to restore the liquid repellency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper compares improvements to the fracture energy and electrical conductivity of epoxy nanocomposites reinforced by one-dimensional carbon nanofibres (CNFs) or two-dimensional graphene nanoplatelets (GNPs). The focus of this investigation is on the effects of the shape, orientation and concentration (i.e. 0.5, 1.0, 1.5 and 2.0 wt%) of nanoscale carbon reinforcements on the property improvements. Alignment of the nano-reinforcements in the epoxy nanocomposites was achieved through the application of an alternating current (AC) electric-field before gelation and curing of the epoxy resin. Alignment of the nano-reinforcements increased the electrical conductivity and simultaneously lowered the percolation threshold necessary to form a conductive network in the nanocomposites. Nano-reinforcement alignment also increased greatly the fracture energy of the epoxy due to a higher fraction of the nano-reinforcement participating in multiple intrinsic (e.g. interfacial debonding and void growth) and extrinsic (e.g. pull-out and bridging) toughening mechanisms. A mechanistic model is presented to quantify the contributions from the different toughening mechanisms induced by CNFs and GNPs to the large improvements in fracture toughness. The model results show that one-dimensional CNFs are more effective than GNPs at increasing the intrinsic toughness of epoxy via void growth, whereas two-dimensional GNPs are more effective than CNFs at improving the extrinsic toughness via crack bridging and pull-out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(acrylonitrile) (PAN) in N,N-dimethylformamide (DMF) is a popular solution for producing large variety of polymer products. To precisely describe the behaviours of PAN and DMF in the synthesis processes, it is significant to call for more details about the structure, some thermodynamic and dynamical properties of PAN-DMF solutions. A PAN-DMF solution was simulated via molecular dynamics with an all-atom OPLS type potential in both the NPT and NVT ensembles. The simulation results were evaluated with quantum mechanical calculations (MP2/6-311 ++G(d,p) and counterpoise procedure) and were compared with available experimental results. The liquid structure was illustrated with pair correlation functions and transport and dynamics properties were calculated with the mean-square displacements MSD and the velocity autocorrelation functions. The strong H-bonds of C≡N « H-C=O, CH » O=C-H and CH2 O=C-H, with distances of 2.55 Å, 2.55 Å and 2.65 Å, respectively, were found. The largest interaction energy of - 7.157 kcal/mol between DMF molecules and PAN molecules was found at 4.9 Å center-of-mass distance. A potential profile of intermolecular interaction of DMF with PAN along the interaction distance was presented, clearly showing an increase of DMF vaporisation heat when it getting close to PAN molecules. This provided very useful information to analyse the vaporisation behaviours of DMF at the microscopic level, which is essential to comprehensively understand molecular rearrangements towards the design of synthetic processes. The impact of the presence of the PAN on the DMF solution properties were also benchmarked with pure DMF solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates the performance of bentonite components of geosynthetic clay liners (GCLs) when exposed to aggressive leachates using the fluid loss test and provides a possible quick method for estimating the effect of acidic conditions on hydraulic conductivity. Fluid loss generally increases with increasing acid concentrations. Hydraulic conductivity values back-calculated from the fluid loss tests (kFL) are compared with the values measured using a flexible-wall permeameter (kTri).Generally, the predicted hydraulic conductivity values are conservative (kFL/kTri > 1) under water and low acid concentrations(≤0.015 mol/L). However, the back-calculated hydraulic conductivity is shown to be nonconservative (kFL/kTri < 1) at high acid concentrations (≥0.125 mol/L).