58 resultados para dorsolateral prefrontal cortex


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bipolar disorder is a common, chronic, and complex mental illness. Bipolar disorder is frequently comorbid with primary mitochondrial and metabolic disorders, and studies have implicated mitochondrial dysfunction in its pathophysiology. In the brains of people with bipolar disorder, high-energy phosphates are decreased, lactate is elevated and pH decreased, which together suggest a shift toward glycolysis for energy production. Furthermore, oxidative stress is increased, and calcium signalling dysregulated. Additionally there is downregulation of the expression of mitochondrial complexes, especially complex I. The therapeutic effects of some bipolar disorder drugs have recently been shown to be related to these mechanisms. In this review we will evaluate current research on the interactions between mitochondrial dysfunction and bipolar disorder pathology. We will then appraise the current literature describing the effects of bipolar disorder drugs on mitochondrial function, and discuss ramifications for future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years metabotropic glutamate receptors have emerged as key targets for the design of new antipsychotic medications for schizophrenia, in particular mGluR5 and mGluR2/3. These receptors exhibit diverse interactions with other neurotransmitter receptors and critical elements of intracellular signalling cascades known to be important to the pharmacotherapy of schizophrenia. In addition, mGluR5 and mGluR2/3 are intimately involved in behavioural domains related to the symptoms of this disorder. Both animal and clinical studies using novel drugs targeting these receptors have provided encouraging results. The number of patents registered for drugs targeting metabotropic glutamate receptors has grown dramatically, and positive allosteric modulators for both receptors show particular promise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Multi-site repetitive transcranial magnetic stimulation (rTMS) has been applied experimentally in the treatment of obsessive compulsive disorder (OCD). NEW METHOD: This study was conducted to systematically evaluate the safety, tolerability and neurocognitive effects of rTMS applied to three cortical regions over a period of three months. NEW METHOD: Twenty healthy participants aged 22-33 years were randomly allocated to receive one session of active or sham stimulation of low and high frequency rTMS applied sequentially to the pre-supplementary motor area, right-dorsolateral prefrontal cortex and left-orbitofrontal cortex totalling 9min. Tolerability and safety was evaluated using a standardised safety questionnaire. Neurocognitive functioning was examined using the Cambridge Neuropsychological Test Automated Battery and measures of verbal fluency from the Delis-Kaplan Executive Functioning Test™ at five time points over three months. RESULTS: The protocol was safe and tolerable. Frequencies of minor adverse effects were higher in active (17 endorsements) than sham (1 endorsement) conditions. No between group differences in neurocognitive functioning were identified over three months. COMPARISON WITH EXISTING METHOD: This study is the first to evaluate the feasibility of low and high frequency parameters applied sequentially in a single session to the three selected cortical regions whilst providing neurocognitive data. CONCLUSIONS: rTMS applied sequentially over three cortical regions was found to be safe and tolerable in healthy individuals with no major neurocognitive effects over three months. Such findings can be used to inform the development of rTMS protocols involving multi-site stimulation for OCD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 Objective: Neuroimaging and electrophysiological research have revealed a range of neural abnormalities in autism spectrum disorder (ASD), but a comprehensive understanding remains elusive. We utilized a novel methodology among individuals with ASD and matched controls, combining transcranial magnetic stimulation (TMS) with concurrent electroencephalogram (EEG) recording (TMS-EEG) to explore cortical function and connectivity in three sites implicated in the neuropathophysiology of ASD (dorsolateral prefrontal cortex, primary motor cortex, and temporoparietal junction). As there is evidence for neurobiological gender differences in ASD, we also examined the influence of biological sex.

Methods: TMS pulses were applied to each of the three sites (right lateralized) during 20-channel EEG recording.

Results: We did not identify any differences in the EEG response to TMS between ASD and control groups. This finding remained when data were stratified by sex. Nevertheless, traits and characteristics associated with ASD were correlated with the neurophysiological response to TMS.

Conclusion: While TMS-EEG did not appear to clarify the neuropathophysiology of ASD, the relationships identified between the neurophysiological response to TMS and clinical characteristics warrant further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cocaine addiction is characterized by impaired self-awareness about cognitive and motivational deficits, leading to poor treatment outcomes. However, there is still limited understanding of the neurophysiological underpinnings of this impairment. We aimed to establish if impaired self-awareness is underpinned by brain structural phenotypes among cocaine-dependent individuals (CDI). Sixty-five CDI and 65 designated informants completed the Frontal Systems Behavior Scale, and a subsample of 40 CDI were scanned via magnetic resonance imaging. We applied multiple regression models to establish the association between levels of self-awareness indexed by Frontal Systems Behavior Scale's discrepancy scores (i.e. informant ratings minus self-reports of apathy, disinhibition and dysexecutive deficits) and gray matter volumes indexed by magnetic resonance imaging voxel-based measures within five brain regions of interest: anterior cingulate cortex, orbitofrontal cortex (OFC), striatum, insula and dorsolateral prefrontal cortex (DLPFC). We also examined the neural underpinnings of underestimation versus overestimation of deficits, by splitting the CDI group according to the positive or negative value of their discrepancy scores. We found that poorer self-awareness of apathy deficits was associated with greater gray matter volume in the dorsal striatum, and poorer self-awareness of disinhibition deficits was associated with greater gray matter volume in the OFC in the whole sample. More underestimation and more overestimation of executive deficits were linked to lower DLPFC volume. We show that impaired self-awareness of cognitive and motivational deficits in cocaine addiction has a neural underpinning, implicating striatum, OFC and DLPFC structural phenotypes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

At present, exposure of a rodent to the odour of a predator is one of the most common animal models of post traumatic stress disorder (PTSD). Despite this, the model remains incompletely characterized, particularly in regard to within subject assessment of major PTSD-like behaviours. In an attempt to redress this situation, we have extensively characterized the two broad categories of behaviour that are considered to characterize PTSD, that is sensitized behaviours such as social withdrawal and hypervigilance and conditioned behaviours such as avoidance of trauma linked cues. Specifically, we determined the presence and duration of both conditioned and sensitized behaviours, in the same cohort of animals, after three exposures to predator odour. Conditioned fear was assessed on the basis of inhibition of locomotor activity upon return to context 2, 7, 14, 21, and 28 days after the last odour exposure session. To assess the impact on sensitization behaviours, we monitored acoustic startle responses and social interaction behaviour 4, 9, 16, 23, and 30 days after the last exposure session. In addition to examining the behavioural consequences associated with odour exposure, we also determined the key brain regions that were activated using ΔFosB immunohistochemistry. Our results show that the two groups of behaviours thought to characterize PTSD (conditioned and sensitized) do not travel together in the predator odour model, with clear evidence of enduring changes in conditioned fear but little evidence of changes in social interaction or acoustic startle. With regard to associated patterns of activity in the brain, we observed that odour-exposed animals exhibited significantly higher numbers of FosB-positive nuclei in only the medial prefrontal cortex (mPFC), a finding that can be viewed as being consistent with the observed behavioural changes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Individuals vary in the way in which they cope with stressful situations. It has been suggested that ‘active’ coping behaviour, characterised by aggression and territorial control, is more effective in moderating the stress associated with social defeat than ‘passive’ coping behaviour, as characterised by immobility, decreased reactivity, and low aggression. We used the rodent ‘resident/intruder’ paradigm to determine whether individual differences in coping behaviour modulate the acute adrenocortical response to social defeat. During the 10 min conflict episode, behaviours displayed by the intruder were recorded and subsequently scored. Intruders that engaged in large numbers of fights and/or frequently used physical structures to block the resident's approach (a behaviour referred to as ‘guarding’), displayed smaller corticosterone responses to defeat than other intruders. Corticosterone responses to defeat were unrelated to a measure of coping style preferences (defensive burying test) obtained prior to the defeat encounter. We further chose to investigate the neurobiological basis of this observation by comparing the patterns of defeat-induced neuronal activation in the forebrains of intruders that displayed high versus low numbers of defensive behaviours during the defeat episode. The results of this analysis indicated that ‘low fight’ and ‘low guard’ intruders, i.e. those that achieved a fight or a guard score below the 20th percentile, had significantly higher numbers of Fos-positive neurons in forebrain regions such as the medial prefrontal cortex and the amygdala than did control animals exposed to an empty resident's cage. In summary, the present data suggest that ‘active’ coping behaviour is associated with both a smaller adrenocortical response and a lower level of ‘neural activation’ following social defeat. This outcome differs from that of earlier studies, a difference that we suggest is due to the fact that the present study is the first to assess coping on the basis of behaviour actually displayed during the conflict interaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study examined if brain pathways in morphine-dependent rats are activated by opioid withdrawal precipitated outside the central nervous system. Withdrawal precipitated with a peripherally acting quaternary opioid antagonist (naloxone methiodide) increased Fos expression but caused a more restricted pattern of neuronal activation than systemic withdrawal (precipitated with naloxone which enters the brain). There was no effect on locus coeruleus and significantly smaller increases in Fos neurons were produced in most other areas. However in the ventrolateral medulla (A1/C1 catecholamine neurons), nucleus of the solitary tract (A2/C2 catecholamine neurons), lateral parabrachial nucleus, supramamillary nucleus, bed nucleus of the stria terminalis, accumbens core and medial prefrontal cortex no differences in the withdrawal treatments were detected. We have shown that peripheral opioid withdrawal can affect central nervous system pathways.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The central nucleus of the amygdala (CeA) is activated robustly by an immune challenge such as the systemic administration of the proinflammatory cytokine interleukin-1β (IL-1β). Because IL-1β is not believed to cross the blood-brain barrier in any significant amount, it is likely that IL-1β elicits CeA cell recruitment by means of activation of afferents to the CeA. However, although many studies have investigated the origins of afferent inputs to the CeA, we do not know which of these also respond to IL-1β. Therefore, to identify candidate neurons responsible for the recruitment of CeA cells by an immune challenge, we iontophoretically deposited a retrograde tracer, cholera toxin b-subunit (CTb), into the CeA of rats 7 days before systemic delivery of IL-1β (1 μg/kg, i.a.). By using combined immunohistochemistry, we then quantified the number of Fos-positive CTb cells in six major regions known to innervate the CeA. These included the medial prefrontal cortex, paraventricular thalamus (PVT), ventral tegmental area, parabrachial nucleus (PB), nucleus tractus solitarius, and ventrolateral medulla. Our results show that after deposit of CTb into the CeA, the majority of double-labeled cells were located in the PB and the PVT, suggesting that CeA cell activation by systemic IL-1β is likely to arise predominantly from cell bodies located in these regions. These findings may have significant implications in determining the central pathways involved in generating acute central responses to a systemic immune challenge.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exploration of the relationships between regional brain volume and anxiety-related personality traits is important for understanding preexisting vulnerability to depressive and anxiety disorders. However, previous studies on this topic have employed relatively limited sample sizes and/or image processing methodology, and they have not clarified possible gender differences. In the present study, 183 (male/female: 117/66) right-handed healthy individuals in the third and fourth decades of life underwent structural magnetic resonance imaging scans and Temperament and Character Inventory. Neuroanatomical correlates of individual differences in the score of harm avoidance (HA) were examined throughout the entire brain using voxel-based morphometry. We found that higher scores on HA were associated with smaller regional gray matter volume in the right hippocampus, which was common to both genders. In contrast, female-specific correlation was found between higher anxiety-related personality traits and smaller regional brain volume in the left anterior prefrontal cortex. The present findings suggest that smaller right hippocampal volume underlies the basis for higher anxiety-related traits common to both genders, whereas anterior prefrontal volume contributes only in females. The results may have implications for why susceptibility to stress-related disorders such as anxiety disorders and depression shows gender and/or individual differences.