121 resultados para distributed denial-of-service attack


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently high-speed networks have been attacked by successive waves of Distributed Denial of Service (DDoS) attacks. There are two major challenges on DDoS defense in the high-speed networks. One is to sensitively and accurately detect attack traffic, and the other is to filter out the attack traffic quickly, which mainly depends on high-speed packet classification. Unfortunately most current defense approaches can not efficiently detect and quickly filter out attack traffic. Our approach is to find the network anomalies by using neural network, deploy the system at distributed routers, identify the attack packets, and then filter them quickly by a Bloom filter-based classifier. The evaluation results show that this approach can be used to defend against both intensive and subtle DDoS attacks, and can catch DDoS attacks’ characteristic of starting from multiple sources to a single victim. The simple complexity, high classification speed and low storage requirements make it especially suitable for DDoS defense in high-speed networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently high-speed networks have been utilized by attackers as Distributed Denial of Service (DDoS) attack infrastructure. Services on high-speed networks also have been attacked by successive waves of the DDoS attacks. How to sensitively and accurately detect the attack traffic, and quickly filter out the attack packets are still the major challenges in DDoS defense. Unfortunately most current defense approaches can not efficiently fulfill these tasks. Our approach is to find the network anomalies by using neural network and classify DDoS packets by a Bloom filter-based classifier (BFC). BFC is a set of spaceefficient data structures and algorithms for packet classification. The evaluation results show that the simple complexity, high classification speed and accuracy and low storage requirements of this classifier make it not only suitable for DDoS filtering in high-speed networks, but also suitable for other applications such as string matching for intrusion detection systems and IP lookup for programmable routers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a new approach, called Flexible Deterministic Packet Marking (FDPM), to perform a large-scale IP traceback to defend against Distributed Denial of Service (DDoS) attacks. In a DDoS attack the victim host or network is usually attacked by a large number of spoofed IP packets coming from multiple sources. IP traceback is the ability to trace the IP packets to their sources without relying on the source address field of the IP header. FDPM provides many flexible features to trace the IP packets and can obtain better tracing capability than current IP traceback mechanisms, such as Probabilistic Packet Marking (PPM), and Deterministic Packet Marking (DPM). The flexibilities of FDPM are in two ways, one is that it can adjust the length of marking field according to the network protocols deployed; the other is that it can adjust the marking rate according to the load of participating routers. The implementation and evaluation demonstrates that the FDPM needs moderately only a small number of packets to complete the traceback process; and can successfully perform a large-scale IP traceback, for example, trace up to 110,000 sources in a single incident response. It has a built-in overload prevention mechanism, therefore this scheme can perform a good traceback process even it is heavily loaded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last couple of months a large number of distributed denial of service (DDoS) attacks have occurred across the world, especially targeting those who provide Web services. IP traceback, a counter measure against DDoS, is the ability to trace IP packets back to the true source/s of the attack. In this paper, an IP traceback scheme using a machine learning technique called intelligent decision prototype (IDP), is proposed. IDP can be used on both probabilistic packet marking (PPM) and deterministic packet marking (DPM) traceback schemes to identify DDoS attacks. This will greatly reduce the packets that are marked and in effect make the system more efficient and effective at tracing the source of an attack compared with other methods. IDP can be applied to many security systems such as data mining, forensic analysis, intrusion detection systems (IDS) and DDoS defense systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DDoS attack traffic is difficult to differentiate from legitimate network traffic during transit from the attacker, or zombies, to the victim. In this paper, we use the theory of network self-similarity to differentiate DDoS flooding attack traffic from legitimate self-similar traffic in the network. We observed that DDoS traffic causes a strange attractor to develop in the pattern of network traffic. From this observation, we developed a neural network detector trained by our DDoS prediction algorithm. Our preliminary experiments and analysis indicate that our proposed chaotic model can accurately and effectively detect DDoS attack traffic. Our approach has the potential to not only detect attack traffic during transit, but to also filter it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed denial of service (DDoS) attack is a continuous critical threat to the Internet. Derived from the low layers, new application-layer-based DDoS attacks utilizing legitimate HTTP requests to overwhelm victim resources are more undetectable. The case may be more serious when suchattacks mimic or occur during the flash crowd event of a popular Website. In this paper, we present the design and implementation of CALD, an architectural extension to protect Web servers against various DDoS attacks that masquerade as flash crowds. CALD provides real-time detection using mess tests but is different from other systems that use resembling methods. First, CALD uses a front-end sensor to monitor thetraffic that may contain various DDoS attacks or flash crowds. Intense pulse in the traffic means possible existence of anomalies because this is the basic property of DDoS attacks and flash crowds. Once abnormal traffic is identified, the sensor sends ATTENTION signal to activate the attack detection module. Second, CALD dynamically records the average frequency of each source IP and check the total mess extent. Theoretically, the mess extent of DDoS attacks is larger than the one of flash crowds. Thus, with some parameters from the attack detection module, the filter is capable of letting the legitimate requests through but the attack traffic stopped. Third, CALD may divide the security modules away from the Web servers. As a result, it keeps maximum performance on the kernel web services, regardless of the harassment from DDoS. In the experiments, the records from www.sina.com and www.taobao.com have proved the value of CALD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed Denial of Service (DDoS) attack is a critical threat to the Internet, and botnets are usually the engines behind them. Sophisticated botmasters attempt to disable detectors by mimicking the traffic patterns of flash crowds. This poses a critical challenge to those who defend against DDoS attacks. In our deep study of the size and organization of current botnets, we found that the current attack flows are usually more similar to each other compared to the flows of flash crowds. Based on this, we proposed a discrimination algorithm using the flow correlation coefficient as a similarity metric among suspicious flows. We formulated the problem, and presented theoretical proofs for the feasibility of the proposed discrimination method in theory. Our extensive experiments confirmed the theoretical analysis and demonstrated the effectiveness of the proposed method in practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anomaly detection techniques are used to find the presence of anomalous activities in a network by comparing traffic data activities against a "normal" baseline. Although it has several advantages which include detection of "zero-day" attacks, the question surrounding absolute definition of systems deviations from its "normal" behaviour is important to reduce the number of false positives in the system. This study proposes a novel multi-agent network-based framework known as Statistical model for Correlation and Detection (SCoDe), an anomaly detection framework that looks for timecorrelated anomalies by leveraging statistical properties of a large network, monitoring the rate of events occurrence based on their intensity. SCoDe is an instantaneous learning-based anomaly detector, practically shifting away from the conventional technique of having a training phase prior to detection. It does acquire its training using the improved extension of Exponential Weighted Moving Average (EWMA) which is proposed in this study. SCoDe does not require any previous knowledge of the network traffic, or network administrators chosen reference window as normal but effectively builds upon the statistical properties from different attributes of the network traffic, to correlate undesirable deviations in order to identify abnormal patterns. The approach is generic as it can be easily modified to fit particular types of problems, with a predefined attribute, and it is highly robust because of the proposed statistical approach. The proposed framework was targeted to detect attacks that increase the number of activities on the network server, examples which include Distributed Denial of Service (DDoS) and, flood and flash-crowd events. This paper provides a mathematical foundation for SCoDe, describing the specific implementation and testing of the approach based on a network log file generated from the cyber range simulation experiment of the industrial partner of this project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Application Layer Distributed Denial of Service (ALDDoS) attacks have been increasing rapidly with the growth of Botnets and Ubiquitous computing. Differentiate to the former DDoS attacks, ALDDoS attacks cannot be efficiently detected, as attackers always adopt legitimate requests with real IP address, and the traffic has high similarity to legitimate traffic. In spite of that, we think, the attackers' browsing behavior will have great disparity from that of the legitimate users'. In this paper, we put forward a novel user behavior-based method to detect the application layer asymmetric DDoS attack. We introduce an extended random walk model to describe user browsing behavior and establish the legitimate pattern of browsing sequences. For each incoming browser, we observe his page request sequence and predict subsequent page request sequence based on random walk model. The similarity between the predicted and the observed page request sequence is used as a criterion to measure the legality of the user, and then attacker would be detected based on it. Evaluation results based on real collected data set has demonstrated that our method is very effective in detecting asymmetric ALDDoS attacks. © 2014 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently a number of highly publicised incidents of Distributed Denial of Service (DDoS) attacks have made people aware of the importance of providing available securely the grids’ data and services to users. This paper introduces the vulnerability of grids to DDoS attacks, and proposes a distributed defense system that has a mixture deployment of sub-systems to protect grids from DDoS attacks. According to the simulation experiments, this system is effective to defend grids against attacks. It can avoid overall network congestion and provide more resources to legitimate grid users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IP source address spoofing exploits a fundamental weakness in the Internet Protocol. It is exploited in many types of network-based attacks such as session hijacking and Denial of Service (DoS). Ingress and egress filtering is aimed at preventing IP spoofing. Techniques such as History based filtering are being used during DoS attacks to filter out attack packets. Packet marking techniques are being used to trace IP packets to a point that is close as possible to their actual source. Present IP spoofing  countermeasures are hindered by compatibility issues between IPv4 and IPv6, implementation issues and their effectiveness under different types of attacks. We propose a topology based packet marking method that builds on the flexibility of packet marking as an IP trace back method while overcoming most of the shortcomings of present packet marking techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor networks represent a new generation of real-time  embedded systems with significantly different communication constraints from the traditional networked systems. With their development, a new attack called a path-based DoS (PDoS) attack has appeared. In a PDoS attack, an adversary, either inside or outside the network, overwhelms sensor nodes by flooding a multi-hop endto- end communication path with either replayed packets or injected spurious packets. In this article, we propose a solution using mobile agents which can detect PDoS attacks easily.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor networks represent a new generation of real-time embedded systems with significantly different communication constraints from the traditional networked systems. With their development, a new attack called a path-based DoS (PDoS) attack has appeared. In a PDoS attack, an adversary, either inside or outside the network, overwhelms sensor nodes by flooding a multi-hop end-to end communication path with either replayed packets or injected spurious packets. Detection and recovery from PDoS attacks have not been given much attention in the literature. In this article, we propose a solution using mobile agents which can detect PDoS attacks easily and efficiently and recover the compromised nodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor networks represent a new generation of real-time embedded systems with significantly different communication constraints from the traditional networked systems. With their development, a new attack called a path-based DoS (PDoS) attack has appeared. In a PDoS attack, an adversary, either inside or outside the network, overwhelms sensor nodes by flooding a multi-hop end-to-end communication path with either replayed packets or injected spurious packets. Detection and recovery from PDoS attacks have not been given much attention in the literature. In this article, we consider wireless sensor networks designed to collect and store data. In a path-based attack, both sensor nodes and the database containing collected data can be compromised. We propose a recovery method using mobile agents which can detect PDoS attacks easily and efficiently and recover the compromised nodes along with the database.