25 resultados para depletion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Species colonization patterns on corpses and the frequency of carrion fly oviposition and larviposition are affected by decomposition stage and previous maggot colonization. This study investigated these effects on meat bait colonization by Victorian Diptera of forensic importance. Bait treatments were: 'aged' (aged for 4 days at 22 °C, allowing some decomposition); 'nutrient-depleted' [aged for 4 days at 22 °C with feeding Calliphora vicina (Robineau-Desvoidy) (Diptera: Calliphoridae) larvae]; 'extract' (fresh bait mixed with liquid formed by feeding C. vicina larvae), and 'fresh' (untreated control bait). Statistical analysis (α = 0.05) revealed that colonization frequency differed significantly among treatments (Welch's F 3,18.83 = 4.66, P < 0.05). Post hoc tests showed that fresh and extract baits were colonized extensively throughout the experiment with no significant difference, whereas the colonization of nutrient-depleted baits was significantly lower. This suggests that larval digestive enzymes, larval excreta and cuticular hydrocarbons have less effect on colonizing Diptera than the nutritional content of meat. The colonization of aged baits did not differ significantly from that of fresh, extract or nutrient-depleted baits. A further experiment testing 'very aged' (aged for 8 days at 28 °C), 'larvae-added' (fresh bait with C. vicina larvae added before placement) and 'fresh' (untreated control) baits revealed that very aged baits were colonized significantly less frequently than either fresh or larvae-added baits (Welch's F 2, 6.17 = 17.40, P < 0.05).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional data compression algorithms for 2D images work using the information theoretic paradigm, attempting to reduce redundant information by as much as possible. However, through the use of a depletion algorithm that takes advantage of characteristics of the human visual system, images can be displayed using only half or a quarter of the original information with no appreciable loss of quality.

The characteristics of the human visual system that allows the viewer to perceive a higher rate of information than is actually displayed is known as the beta or picket fence effect. It is called the picket fence effect because its effect is noticeable when a person is travelling along a picket fence. Despite the person not having an unimpeded view of the objects behind the fence at any instant, as the person is moving, the objects behind the picket fence are clearly visible. In fact, in most cases the fence is hardly noticeable at all.

The techniques we have developed uses this effect to achieve higher levels of compression than would otherwise be possible. As a fundamental characteristic of the beta effect is the requirement that there is movement of the fence in relation to the object, the beta effect can only be used in image sequences where movement between the depletion pattern and objects within the image can be achieved.

As MPEG is the recognised standard by which image sequences are coded, compatibility with MPEG is essential. We have modified our technique such that it performs in conjunction with MPEG, providing further compression over MPEG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we identify the size-dependent risk of winter starvation mortality as a strong selective pressure on age-0 rainbow trout (Oncorhynchus mykiss) that could promote the risk-taking behaviour and allocation of energy to lipids previously observed in young trout cohorts. Age-0 trout subjected to simulated winter starvation conditions gradually depleted lipid reserves to a critical minimum lipid content below which death occurred. Small fish with lower lipid content exhausted lipid reserves earlier, and experienced high mortality rates sooner, than larger fish with greater lipid content. Consequently, winter starvation endurance was dependent upon size-dependent lipid reserves and winter duration. To validate the laboratory findings in the field, we stocked several size classes of hatchery-raised trout with known lipid content at the start of winter into two experimental lakes, and estimated survival and lipid depletion at winter's end. Larger age-0 trout had greater initial lipid reserves than smaller trout. Individuals depleted most of their lipid reserves over the winter, and experienced mortality that ranged from just under 60% for the largest individuals to just over 90% of the smallest individuals. Many survivors had lipid contents near, but none were below, the minimum lipid content determined in the laboratory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility for fishery-induced evolution of life history traits is an important but unresolved issue for exploited fish populations. Because fisheries tend to select and remove the largest individuals, there is the evolutionary potential for lasting effects on fish production and productivity. Size selection represents an indirect mechanism of selection against rapid growth rate, because individual fish may be large because of rapid growth or because of slow growth but old age. The possibility for direct selection on growth rate, whereby fast-growing genotypes are more vulnerable to fishing irrespective of their size, is unexplored. In this scenario, faster-growing genotypes may be more vulnerable to fishing because of greater appetite and correspondingly greater feeding-related activity rates and boldness that could increase encounter with fishing gear and vulnerability to it. In a realistic whole-lake experiment, we show that fast-growing fish genotypes are harvested at three times the rate of the slow-growing genotypes within two replicate lake populations. Overall, 50% of fast-growing individuals were harvested compared with 30% of slow-growing individuals, independent of body size. Greater harvest of fast-growing genotypes was attributable to their greater behavioral vulnerability, being more active and bold. Given that growth is heritable in fishes, we speculate that evolution of slower growth rates attributable to behavioral vulnerability may be widespread in harvested fish populations. Our results indicate that commonly used minimum size-limits will not prevent overexploitation of fast-growing genotypes and individuals because of size-independent growth-rate selection by fishing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the relationship between markers of mitochondrial biogenesis, cell signaling, and antioxidant enzymes by depleting skeletal muscle glutathione with diethyl maleate (DEM) which resulted in a demonstrable increase in oxidative stress during exercise. Animals were divided into six groups: (1) sedentary control rats; (2) sedentary rats + DEM; (3) exercise control rats euthanized immediately after exercise; (4) exercise rats + DEM; (5) exercise control rats euthanized 4 h after exercise; and (6) exercise rats + DEM euthanized 4 h after exercise. Exercising animals ran on the treadmill at a 10% gradient at 20 m/min for the first 30 min. The speed was then increased every 10 min by 1.6 m/min until exhaustion. There was a reduction in total glutathione in the skeletal muscle of DEM treated animals compared to the control animals (P < 0.05). Within the control group, total glutathione was higher in the sedentary group compared to after exercise (P < 0.05). DEM treatment also significantly increased oxidative stress, as measured by increased plasma F2-isoprostanes (P < 0.05). Exercising animals given DEM showed a significantly greater increase in peroxisome proliferator activated receptor γ coactivator-1α (PGC-1α) mRNA compared to the control animals that were exercised (P < 0.05). This study provides novel evidence that by lowering the endogenous antioxidant glutathione in skeletal muscle and inducing oxidative stress through exercise, PGC-1α gene expression was augmented. These findings further highlight the important role of exercise induced oxidative stress in the regulation of mitochondrial biogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We tested whether the spatial variation in resource depletion by Tundra Swans (Cygnus columbianus) foraging on belowground tubers of sago pondweed (Potamogeton pectinatus) was caused by differences in net energy intake rates. The variation in giving-up densities within the confines of one lake was nearly eightfold, the giving-up density being positively related to water depth and, to a lesser extent, the silt content of the sediment. The swans' preference (measured as cumulative foraging pressure) was negatively related to these variables. We adjusted a model developed for diving birds to predict changes in the time allocation of foraging swans with changes in power requirements and harvest rate. First, we compared the behavior of free-living swans foraging in shallow and deep water, where they feed by head-dipping and up-ending, respectively. Up-ending swans had 1.3-2.1 times longer feeding times than head-dipping swans. This was contrary to our expectation, since the model predicted a decrease in feeding time with an increase in feeding power. However, up-ending swans also had 1.9 times longer trampling times than headdipping swans. The model predicted a strong positive correlation between trampling time and feeding time, and the longer trampling times may thus have masked any effect of an increase in feeding power. Heart rate measurements showed that trampling was the most energetically costly part of foraging. However, because the feeding time and trampling time changed concurrently, the rate of energy expenditure was only slightly higher in deep water (1.03-1.06 times). This is a conservative estimate since it does not take into account that the feeding costs of up-ending are possibly higher than that of head-dipping. Second, we compared captive swans foraging on sandy and clayey sediments. We found that the harvest rate on clayey sediment was only 0.6 times that on sandy sediment and that the power requirements for foraging were 1.2-1.4 times greater. Our results are in qualitative agreement with the hypothesis that the large spatial variation in giving-up densities was caused by differences in net rates of energy intake. This potentially has important implications for the prey dynamics, because plant regrowth has been shown to be related to the same habitat factors (water depth and sediment type).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE/INTRODUCTION: We have examined the immune status of elderly patients who underwent surgery for a hip fracture, an injury associated with poor postoperative outcomes, to identify specific immune defects. METHODS: In a cohort observational study, 16 patients undergoing surgery for hip fractures had immune function evaluation prior to surgery, and then at 3 and 7 days postoperatively, using flow cytometry for phenotype and for monocyte and granulocyte phagocytic function and respiratory burst. Serum samples were stored and batch analyzed using a human cytokine 25-plex panel. RESULTS: We report significant loss of innate immune function, related specifically to reduced granulocyte numbers by day 7 (P < .0001, flow cytometry; P < .05 white blood cells), and although granulocyte ability to take up opsonized Escherichia coli was increased (P < .05), the ability of those cells to generate a respiratory burst was reduced at days 3 and 7 (P < .05). Monocyte respiratory burst was also significantly reduced (P < .05). Serum cytokine levels indicated very poor T-cell function. CONCLUSION: We have demonstrated that the antimicrobial immune response is profoundly reduced after surgery in elderly patients with hip fractures. The effect was sustained up to 7 days postoperatively, identifying these patients as particularly vulnerable to bacterial infections.