27 resultados para density functional calculations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The novel phosphonyl-substituted ferrocene derivatives [Fe(η(5) -Cp)(η(5) -C5 H3 {P(O)(O-iPr)2 }2 -1,2)] (Fc(1,2) ) and [Fe{η(5) -C5 H4 P(O)(O-iPr)2 }2 ] (Fc(1,1') ) react with SnCl2 , SnCl4 , and SnPh2 Cl2 , giving the corresponding complexes [(Fc(1,2) )2 SnCl][SnCl3 ] (1), [{(Fc(1,1') )SnCl2 }n ] (2), [(Fc(1,1') )SnCl4 ] (3), [{(Fc(1,1') )SnPh2 Cl2 }n ] (4), and [(Fc(1,2) )SnCl4 ] (5), respectively. The compounds are characterized by elemental analyses, (1) H, (13) C, (31) P, (119) Sn NMR and IR spectroscopy, (31) P and (119) Sn CP-MAS NMR spectroscopy, cyclovoltammetry, electrospray ionization mass spectrometry, and single-crystal as well as powder X-ray diffraction analyses. The experimental work is accompanied by DFT calculations, which help to shed light on the origin for the different reaction behavior of Fc(1,1') and Fc(1,2) towards tin(II) chloride.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Triangle-shaped nanohole, nanodot, and lattice antidot structures in hexagonal boron-nitride (h-BN) monolayer sheets are characterized with density functional theory calculations utilizing the local spin density approximation. We find that such structures may exhibit very large magnetic moments and associated spin splitting. N-terminated nanodots and antidots show strong spin anisotropy around the Fermi level, that is, half-metallicity. While B-terminated nanodots are shown to lack magnetism due to edge reconstruction, B-terminated nanoholes can retain magnetic character due to the enhanced structural stability of the surrounding two-dimensional matrix. In spite of significant lattice contraction due to the presence of multiple holes, antidot super lattices are predicted to be stable, exhibiting amplified magnetism as well as greatly enhanced half-metallicity. Collectively, the results indicate new opportunities for designing h-BN-based nanoscale devices with potential applications in the areas of spintronics, light emission, and photocatalysis. © 2009 American Chemical Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aluminium speciation: Aluminium speciation in NTf2 ionic liquids has a strong influence on its electrodeposition from the liquid mixture. This work probed the nature of these species and proposes that the electroactive species involved are either [AlCl3(NTf2)] or [AlCl2(NTf2)2] (e.g., see figure).


Electrodeposition of aluminium is possible from solutions of AlCl3 dissolved in the 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide (C4mpyrNTf2) ionic liquid. However, electrodeposition is dependant on the AlCl3 concentration as it only occurs at concentrations >1.6 mol L−1. At these relatively high AlCl3 concentrations the C4mpyrNTf2/AlCl3 mixtures exhibit biphasic behaviour. Notably, at 1.6 mol L−1 AlCl3, aluminium can only be electrodeposited from the upper phase. Conversely, we found that at 3.3 mol L−1 aluminium electrodeposition can only occur from the lower phase. The complex chemistry of the C4mpyrNTf2/AlCl3 system is described and implications of aluminium speciation in several C4mpyrNTf2/AlCl3 mixtures, as deduced from Raman and 27Al NMR spectroscopic data, are discussed. The 27Al NMR spectra of the C4mpyrNTf2/AlCl3 mixtures revealed the presence of both tetrahedrally and octahedrally coordinated aluminium species. Raman spectroscopy revealed that the level of uncoordinated NTf2 anions decreased with increasing AlCl3 concentration. Quantum chemical calculations using density functional and ab initio theory were employed to identify plausible aluminium-containing species and to calculate their vibrational frequencies, which in turn assisted the assignment of the observed Raman bands. The data indicate that the electroactive species involved are likely to be either [AlCl3(NTf2)] or [AlCl2(NTf2)2].

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Scanning tunneling microscopy (STM) images of 1,10-phenanthroline (PHEN) and dipyrido[3,2-a:2‘,3‘-c]phenazine (DPPZ) on Au(111) are recorded using both in situ and ex situ techniques. The images of PHEN depict regimes of physisorption and chemisorption, whereas DPPZ is only physisorbed. All physisorbed structures are not pitted and fluctuate dynamically, involving aligned (4 × 4) surface domains with short-range (ca. 20 molecules) order for PHEN but unaligned chains with medium-range (ca. 100 molecules) order for DPPZ. In contrast, the chemisorbed PHEN monolayers remain stable for days, are associated with surface pitting, and form a (4 × √13)R46° lattice with long-range order. The density of pitted atoms on large gold terraces is shown to match the density of chemisorbed molecules, suggesting that gold adatoms link PHEN to the surface. For PHEN, chemisorbed and physisorbed adsorbate structures are optimized using plane-wave density-functional theory (DFT) calculations for the surface structure. Realistic binding energies are then obtained adding dispersive corrections determined using complete-active-space self-consistent field calculations using second-order perturbation theory (CASPT2) applied to cluster-interaction models. A fine balance between the large adsorbate−adsorbate dispersive forces, adsorbate−surface dispersive forces, gold ligation energy, and surface mining energy is shown to dictate the observed phenomena, leading to high surface mobility and substrate/surface lattice incommensurability. Increasing the magnitude of the dispersive forces through use of DPPZ, rather than PHEN, to disturb this balance produced physisorbed monolayers without pits and/or surface registration but with much longer-range order. Analogies are drawn with similar but poorly understood processes involved in the binding of thiols to Au(111).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Phytoestrogens daidzein (4′,7-dihydroxy-isoflavone) and formononetin (4′-methoxy-7-hydroxy-isoflavone) have been studied by surface-enhanced Raman (SER) spectroscopy. Spectra were acquired in the presence of citratereduced silver colloids, over a range of pH and concentrations. Density functional theory calculations were used to assist assignment of the normal Raman spectra and help determine the mode of interaction of isoflavones with the silver nanoparticles. Formononetin does not show SER activity unless the 7-OH group is deprotonated, and accordingly, the interaction with the silver surface occurs via the deprotonated site. Daidzein, on the other hand, appears to contain multiple species at the surface, interacting via both the hydroxyl groups at 7-OH and 4′-OH, after deprotonation. This is an important result that points to potential future SERS applications in phytoestrogen analysis and provides a foundation for understanding the SER spectra of isoflavones.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A series of 5-hydroxy-isoflavones—genistein, biochanin A, prunetin, and 4′,7-dimethoxygenistein—have been studied by surface-enhanced Raman spectroscopy (SERS). Citrate reduced silver colloids were employed as a standard technique to measure SER spectra over a range of pH and concentrations. Density functional theory calculations were used to assist in determining the mode of interaction of isoflavones with the silver nanoparticles. It is revealed that biochanin A and prunetin interact with the silver nanoparticles upon deprotonation of the 7- and the 4′-OH groups, respectively, to show SERS activity. Correlations of their spectra with SERS of genistein strongly support the presence of multiple interaction modes involving both of the OH groups in genistein, in a similar manner to daidzein. Surprisingly, however, under these conditions, the 5-OH group was found to be noninteractive as revealed by attempts to measure SERS of 4′,7-dimethoxygenistein. This was attributed partly to the low solubility and, more importantly, to the influence of steric hindrance, caused by the position of the pendant phenyl ring, which prevented interaction with the Ag colloid surface. These results complement recent work on daidzein and formononetin and provide further insight into understanding the SER spectra of isoflavones.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report here, for the first time, the surface-enhanced Raman scattering (SERS) spectra of resveratrol using KNO3-aggregated citrate-reduced silver (Ag) colloids. The technique provided a substantial spectral enhancement and therefore good quality spectra of resveratrol at parts per million (ppm) concentrations. The detection limit was found to be <1 μM, equivalent to <0.2 ppm. The SERS profile additionally closely resembled its normal solid-state Raman spectrum with some changes in relative intensity. These intensity changes, together with a precise band assignment aided by density functional theory calculations at the B3LYP/6–31G(d) level, allowed the determination of the structural orientation of the adsorbed resveratrol on the surface of the metal nanoparticles. In particular, the SERS spectra obtained at different resveratrol concentrations exhibited concentration-dependent features, suggesting an influence of surface coverage on the orientation of the adsorbed molecules. At a high concentration, an adoption of close-to-upright orientation of resveratrol adsorbed on the metal surface through the p-OH phenyl ring is favoured. The binding structure is, however, altered at lower surface coverage when the concentration decreases to a tilted orientation with the trans-olefin C=C bond aligning closer to parallel to the surface of the Ag nanoparticles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Theoretical calculations for some structural and electronic properties of the azide moiety in the nucleoside reverse transcriptase (RT) inhibitor 3′-azido-3′- deoxythymidine (AZT) are reported. These properties, which include geometrical properties in three dimensional space, Hirshfeld charges, electrostatic potential (MEP), vibrational frequencies, and core and valence ionization spectra, are employed to study how the azide group is affected by the presence of a larger fragment. For this purpose, two small but important organic azides, hydrazoic acid and methyl azide, are also considered. The general features of trans Cs configuration for RNNN fragments[1] is distorted in the large AZT bio-molecule. Hirshfeld charge analysis shows charges are reallocated more evenly on azide when the donor group R is not a single atom. Infrared and photoelectron spectra reveal different aspects of the compounds. In conclusion, the electronic structural properties of the compounds depend on the specific property, the local structure and chemical environment of a species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The homoleptic 1:1 Lewis pair (LP) complex [MesTe(TeMes₂)]O₃SCF₃ (1) featuring the cation [MesTe(TeMes₂)]+ (1a) was obtained by the reaction of Mes₂Te with HO₃SCF₃. The reaction of 1 with Ph₃E (E = P, As, Sb, Bi) proceeded with substitution of Mes₂Te and provided the heteroleptic 1:1 LP complexes [MesTe(EPh₃)]O₃SCF₃ (2, E = P; 3, E = As) and [MesTe(SbPh₃)][Ph₂Sb(O₃SCF₃)₂] (4) featuring the cations [MesTe(EPh₃)]+ (2a, E = P; 3a, E = As; 4a, E = Sb) and the anion [Ph₂Sb(O₃SCF₃)₂]− (4b). In the reaction with Ph₃Bi, the crude product contained the cation [MesTe(BiPh₃)]+ (5a) and the anion [Ph₂Bi(O₃SCF₃)₂]− (5b); however, the heteroleptic 1:1 LP complex [MesTe(BiPh₃)][Ph₂Bi(O₃SCF₃)₂] (5) could not be isolated because of its limited stability. Instead, fractional crystallization furnished a large amount of Ph₂BiO₃SCF₃ (6), which was also obtained by the reaction of Ph₃Bi with HO₃SCF₃. The formation of the anions 4b and 5b involves a phenyl group migration from Ph₃E (E = Sb, Bi) to the MesTe+ cation and afforded MesTePh as the byproduct, which was identified in the mother liquor. The heteroleptic 1:1 LP complexes 2–4 were also obtained by the one-pot reaction of Mes₂Te, Ph₃E (E = P, As, Sb) and HO₃SCF₃. Compounds 1–4 and 6 were investigated by single-crystal X-ray diffraction. The molecular structures of 1a–4a were used for density functional theory calculations at the B3PW91/TZ level of theory and studied using natural bond order (NBO) analyses as well as real-space bonding descriptors derived from an atoms-in-molecules (AIM) analysis of the theoretically obtained electron density. Additionally, the electron localizability indicator (ELI-D) and the delocalization index are derived from the corresponding pair density.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electrocatalytic reduction of water to molecular hydrogen via the hydrogen evolution reaction may provide a sustainable energy supply for the future, but its commercial application is hampered by the use of precious platinum catalysts. All alternatives to platinum thus far are based on nonprecious metals, and, to our knowledge, there is no report about a catalyst for electrocatalytic hydrogen evolution beyond metals. Here we couple graphitic-carbon nitride with nitrogen-doped graphene to produce a metal-free hybrid catalyst, which shows an unexpected hydrogen evolution reaction activity with comparable overpotential and Tafel slope to some of well-developed metallic catalysts. Experimental observations in combination with density functional theory calculations reveal that its unusual electrocatalytic properties originate from an intrinsic chemical and electronic coupling that synergistically promotes the proton adsorption and reduction kinetics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nitrogen-14 solid-state NMR (SSNMR) is utilized to differentiate three polymorphic forms and a hydrochloride (HCl) salt of the amino acid glycine. Frequency-swept Wideband, Uniform Rate, Smooth Truncated (WURST) pulses were used in conjunction with Carr-Purcell Meiboom-Gill refocusing, in the form of the WURST-CPMG pulse sequence, for all spectral acquisitions. The 14N quadrupolar interaction is shown to be very sensitive to variations in the local electric field gradients (EFGs) about the 14N nucleus; hence, differentiation of the samples is accomplished through determination of the quadrupolar parameters CQ and ηQ, which are obtained from analytical simulations of the 14N SSNMR powder patterns of stationary samples (i.e., static NMR spectra). Additionally, differentiation of the polymorphs is also possible via the measurement of 14N effective transverse relaxation time constants, Teff2(14N). Plane-wave density functional theory (DFT) calculations, which exploit the periodicity of crystal lattices, are utilized to confirm the experimentally determined quadrupolar parameters as well as to determine the orientation of the 14N EFG tensors in the molecular frames. Several signal-enhancement techniques are also discussed to help improve the sensitivity of the 14N SSNMR acquisition method, including the use of selective deuteration, the application of the BRoadband Adiabatic INversion Cross-Polarization (BRAIN-CP) technique, and the use of variable-temperature (VT) experiments. Finally, we examine several cases where 14N VT experiments employing Carr-Purcell-Meiboom-Gill (CPMG) refocusing are used to approximate the rotational energy barriers for RNH3+ groups.