96 resultados para dehaired cashmere


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cashmere fibre production is an order of magnitude less than fibre production of Merino sheep or Angora goats and is more difficult to measure. Based on a comparison between cashmere experiments reporting responses to nutrition and those reporting no response, 13 design and management characteristics were identified that are related to the ability of experiments to discriminate among treatments. Methods must be adopted to reduce the variance in cashmere production within treatments, by using sufficient. animals per treatment, having enough replication to provide plenty of degrees of freedom to reduce error terms in analysis, and using pre-experimental cashmere production attributes as co-variants in analysis. It is preferable to use more productive and older goats, and goats that are used to handling, and to the conditions and feed to be used. Nutrition treatments need to produce different live weight growth curves and an appropriate control is needed such as live weight maintenance. As the raw cashmere fleece is composed primarily of hair and other contaminants, careful attention is required to measure, sample and test cashmere. Cashmere growth experiments should start by midsummer and last for at least four and preferably six months. These requirements make it more difficult for many university students to plan, undertake and complete long-term cashmere nutrition experiments without considerable management support.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the use of the wavelet transform to extract fibre surface texture features for classifying cashmere and superfine merino wool fibres. To extract features from brightness variations caused by the cuticular scale height, shape and interval provides an effective way for characterising different animal fibres and subsequently classifying them. This may enable the development of a completely automated and objective system for animal fibre
identification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the differences in the chemical composition, particularly fatty acids, of the lipid extracted from the fibre of bucks, does and castrated goats. The study provides a more detailed understanding of the chemical composition of buck fibre lipid and how it varies throughout the year, and also details the effect of body region and nutrition on the production and chemical composition of lipid from buck fibre. Lipid was extracted with either petroleum ether (non-polar) or chloroform/methanol azeotrope (polar) and analysed by gas chromatography and gas chromatography-mass spectrometry. The more polar solvent system extracted larger amounts of lipid and more of each individual fatty acid. The following buck specific ethyl branched fatty acids were identified: 2-ethylhexanoic, 4-ethylhexanoic, 2-ethyloctanoic, 4-ethyloctanoic, 6-ethyloctanoic, 2-ethyldecanoic, 4-ethyldecanoic, 2-ethyldodecanoic, 6-ethyldodecanoic, 4-ethyldodecanoic, 2-ethyltetradecanoic, 6-ethyltetradecanoic, 4-ethyltetradecanoic, 2-ethylhexadecanoic and 4-ethyloctadecanoic acids. Of these buck specific fatty acids only 4-ethylhexanoic (T), 4-ethyloctanoic, 4-ethyldecanoic, 4-ethyldodecanoic, 6-ethyldodecanoic (T), 4-ethyltetradecanoic, 2-ethylhexadecanoic (T) and 4-ethylhexadecanoic acids have been previously identified or tentatively identified (T) in buck fibre extracts. This shows that the chemical composition of buck fibre lipid is more complex than previously reported, and that it may be more difficult than previously thought to artificially duplicate the odour of the buck. Buck fibre samples had lower average concentrations of 2-methylpropanoic, 2-methylbutanoic, iso-pentadecanoic, anteiso-pentadecanoic, iso-hexadecanoic, anteiso-heptadecanoic, iso-octadecanoic and anteiso-nonadecanoic acids as compared with fibre samples from does, spayed does, or wethers that were castrated at one month of age. The reduced concentrations of these fatty acids in buck fibre extracts were likely to be due to the synthesis of ethyl branched derivatives of iso and anteiso fatty acids. Buck fibre samples had higher concentrations of benzoic acid as compared with fibre samples from does, spayed does, or wethers that were castrated at one month of age. The significance of these results is that non buck specific fatty acids may also make a contribution to the odour of bucks. When fibre samples were collected at various times throughout the year, it was found that the bucks had increased amounts of lipid and ethyl branched fatty acids in fibre samples shorn from March to September, as compared with fibre samples shorn in November and January. The increase in the amount of lipid and ethyl branched fatty acids corresponded with both the rutting period of the buck and the period when the buck odour was increased. This suggests that ethyl branched fatty acids could be pheromones. The variation in lipid content and fatty acid composition was also examined between fibre samples collected from different body regions of the buck during April, as alterations in sebaceous gland activity around the neck during rutting have been reported. It was found that the average amount of lipid in the neck region of the bucks was not statistically higher than the average amounts in the midside and hind regions. However, the ethyl branched fatty acid concentrations were statistically higher in the fibre from around the neck as compared with the fibre from the other body regions, which is consistent with the odour of the buck being most pronounced around the head and neck region. The lipid content and composition of fibre samples from bucks fed high and low quality diets (lucerne and pangola grass, respectively) was examined to determine the effect of nutrition on buck specific components. The high quality diet increased the amount of lipid and ethyl branched fatty acids in fibre samples collected in April from the neck, midside and hind regions, as compared with fibre samples from the corresponding body regions from bucks fed the low quality diet. Thus it may be possible for the pheromone levels of bucks to be increased by simply providing them with good nutrition. The lipid content and ethyl branched fatty acid concentrations of fibre samples increased earlier in the year for the lucerne fed bucks as compared with the pangola grass fed bucks. The lucerne fed bucks had increased concentrations of ethyl branched fatty acids in fibre samples shorn during December to June (6 months) whereas the pangola grass fed bucks had increased concentrations of ethyl branched fatty acids in fibre samples shorn during April to August (4 months). These observations show that good nutrition can result in both the earlier production of ethyl branched fatty acids and an extended period when ethyl branched fatty acids are produced. This suggests that nutrition can be used to manipulate pheromone levels in the buck. The period when the ethyl branched fatty acids were increased corresponded with the period when the plasma luteinizing hormone (LH) and testosterone concentrations, odour and sebaceous gland volume of the bucks were increased, which supports the assumption that ethyl branched fatty acids are involved in odour production and act as pheromones.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the differences between two international test methods on the assessment of pilling and appearance change of worsted spun cashmere and superfine wool knitwear and their blends. Differences between the standard ICI Pill Box Method and the Random Tumble Method were found in both the significance and magnitude of resistance to pilling and appearance change and the amount of fabric mass loss of worsted spun cashmere and cashmere superfine wool blend knit fabrics. The ICI Pill Box Method differentiated to a greater extent the effects of wool type and blend ratio of cashmere and wool compared with the Random Tumble Method. Generally the addition of cashmere or low crimp superfine wool resulted in fabrics being more resistance to pilling and appearance change compared with fabrics made from high crimp superfine wool. This was associated with increased fabric mass loss when assessed by the ICI Pill Box Method but not with the Random Tumble Method. KEYWORDS: Cashmere, crimp, wool, pilling, appearance change, knitwear

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differences in cashmere production and fleece attributes associated with farm of origin, age and sex were quantified for commercial Australian cashmere goat enterprises. From 11 farms in four states, 1147 does and 97 wethers were monitored, representing 1- to 13-year-old goats. Individual clean cashmere production ranged from 21 to 389 g, with a mean ± standard deviation value of 134 ± 62 g. The mean cashmere production of 2-year-old does from different farms varied from 69 to 225 g and averaged 141 g. Mean ± s.d. greasy fleece weight was 394 ± 123 g, clean washing yield was 90.8 ± 4.1%, clean cashmere yield 33.4 ± 9.4%, cashmere fibre diameter 16.4 ± 1.6 µm, fibre curvature 48 ± 8.7 degrees/mm and staple length 8.7 ± 2.1 cm. There were large, commercially significant differences between farms for clean cashmere weight, mean fibre diameter and other attributes of cashmere. These were much larger than the effects of age and sex. Farm and age accounted for 42 to 67% of the variation in clean cashmere production, mean fibre diameter, fibre curvature, staple length and clean washing yield. Farm of origin affected clean cashmere yield, accounting for 24% of the variation. Sex of the goats had only a minor effect on the staple length of cashmere. The responses to age of clean cashmere weight, mean fibre diameter and the inverse of fibre curvature are very similar. Generally, cashmere production and mean fibre diameter increased with age. For the majority of farms, cashmere fibre curvature declined in a curvilinear manner with increases in age of goat. There were large differences in cashmere staple length from different farms, with means ranging from 7 to 12 cm. Between 1 and 2 years of age, the staple length of cashmere demonstrated a constant proportional increase. At ages older than 2 years, staple length either declined or increased by less than 1 cm with age, depending on the farm of origin. This study demonstrates that there are large gains in productivity that can be achieved from Australian cashmere goats. A better understanding of on-farm factors that influence cashmere production would enable all producers to optimise their production systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We aimed to quantify the sources of variation contributing to the production and quality of cashmere produced in five districts in Osh and Naryn provinces of Kyrgyzstan. In early spring 2008 mid-side cashmere samples were taken from 719 cashmere adult females, and 41 cashmere adult males and castrates. Samples came from 53 villages and a total of 156 farmers’ flocks. For 91 goats from 33 farmers in 13 villages of two districts that had been sampled earlier, cashmere was combed from the goat at the time of a second visit (end of April 2008) when the cashmere would normally be harvested. Following standard cashmere objective measurement, data were examined using general linear modelling to quantify the effects of potential determinants. The mean fibre diameter (MFD) of cashmere differed between provinces (Osh 15.7 μm, Naryn 16.7 μm; P = 4.4 × 10−20). About 42% of the cashmere was <16 μm, 48% was 16.0–18.0 μm and 9.5% was >18.0 μm. Most of the cashmere samples were coloured (81%), with 63% black and 19% white. The percentage of cashmere samples that were white declined as MFD increased (26% < 14 μm to 11% of >18 μm). The primary determinants of cashmere MFD of individual goats were age of goat (range 1.46 μm, P = 1.8 × 10−12) and farm (range 6.5 μm, P = 1.7 × 10−14). The lesser effects detected for sex (range 0.9 μm, P = 0.026) and colour of cashmere (range 1.8 μm, P = 0.023) were based on small sample sizes and are unreliable. Age of goat had important affects on fibre diameter variation (up to 1.7% in coefficient of variation, P = 5.8 × 10−6) and fibre curvature (2.5–5°/mm, P = 2.1 × 10−4). By far the greatest effect on fibre curvature was cashmere MFD (P = 3.0 × 10−104) with a smaller effect of sex (about 5°/mm, P = 3.0 × 10−6). Village effects were detected on fibre diameter variability (range 4.5% in coefficient of variation, P = 0.027) and fibre curvature (range 15°/mm, P = 1.6 × 10−7). There was a strong negative association between increasing MFD and declining fibre curvature (−5.11 ± 0.181°/mm per 1 μm; P = 7.1 × 10−121; r2 = 0.51). Average combed cashmere weight was 164 g, the clean cashmere content was 0.661 and median clean cashmere production was 110 g per goat (range 60–351 g). Combed cashmere production increased with altitude of the village, probably related to different moulting times as spring temperatures warmed up later in higher altitude villages up to 3200 masl. Measurements of combed cashmere MFD were coarser than the mid-side samples taken earlier in the year. There are farmers and cashmere goats in the sampled districts of Kyrgyzstan which produce the finest qualities of commercial cashmere as the vast majority of cashmere is fine, has low variation in fibre diameter and has fibre crimping (curvature) typical of Chinese and Mongolian cashmere. There is substantial scope to increase the production and commercial value of cashmere produced by Kyrgyz goats. In particular, some villages and farmers need to change their buck selection practices if they wish to produce acceptable cashmere. Farmers should separate their finer and white cashmere prior to sale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study has focussed on three main areas. First, an evaluation of the physical attributes of cashmere tops available to commercial spinners; second, the influence of processing variables on the efficiency of producing cashmere tops from raw Australian cashmere; and third, the influence of design of cashmere ultrafine wool blends on the fibre curvature of tops. Testing the physical attributes of cashmere tops from traditional and new sources of supply, was followed by statistical analyses based on factors of origin, processor and other determinants. The analyses demonstrated important processor effects and also that cashmere from different origins shows commercially important variations in fibre attributes. It was possible to efficiently produce Australian cashmere tops with Hauteur, tenacity, extension, softness and residual guard hairs quality attributes equivalent to those observed in the best cashmere tops. The blending of cashmere with wool resulted in a reduction of the mean fibre curvature of the blend compared with the unblended wool. The present work demonstrated that the fibre curvature properties of blended low crimp ultrafine wool tops were closer to the properties of pure cashmere tops than were tops made from blended standard high crimp ultrafine wool. The attributes of textiles made from the relatively rare Australian low curvature cashmere could enhance the marketability of both Australian cashmere and low curvature wool.