93 resultados para contraction musculaire statique


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exercise during growth results in biologically important increases in bone mineral content (BMC). The aim of this study was to determine whether the effects of loading were site specific and depended on the maturational stage of the region. BMC and humeral dimensions were determined using DXA and magnetic resonance imaging (MRI) of the loaded and nonloaded arms in 47 competitive female tennis players aged 8-17 years. Periosteal (external) cross-sectional area (CSA), cortical area, medullary area, and the polar second moments of area (Ip, mm4) were calculated at the mid and distal sites in the loaded and nonloaded arms. BMC and I p of the humerus were 11-14% greater in the loaded arm than in the nonloaded arm in prepubertal players and did not increase further in peri- or postpubertal players despite longer duration of loading (both, p < 0.01). The higher BMC was the result of a 7-11% greater cortical area in the prepubertal players due to greater periosteal than medullary expansion at the midhumerus and a greater periosteal expansion alone at the distal humerus. Loading late in puberty resulted in medullary contraction. Growth and the effects of loading are region and surface specific, with periosteal apposition before puberty accounting for the increase in the bone's resistance to torsion and endocortical contraction contributing late in puberty conferring little increase in resistance to torsion. Increasing the bone's rt.osistance to torsion is achieved hy modifying bone shape and mass, not necessarily bone density.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Muscle glycogen is an important fuel for contracting skeletal muscle during prolonged strenuous exercise, and glycogen depletion has been implicated in muscle fatigue. It is also apparent that glycogen availability can exert important effects on a range of metabolic and cellular processes. These processes include carbohydrate, fat and protein metabolism during exercise, post-exercise glycogen resynthesis, excitation–contraction coupling, insulin action and gene transcription. For example, low muscle glycogen is associated with reduced muscle glycogenolysis, increased glucose and NEFA uptake and protein degradation, accelerated glycogen resynthesis, impaired excitation–contraction coupling, enhanced insulin action and potentiation of the exercise-induced increases in transcription of metabolic genes. Future studies should identify the mechanisms underlying, and the functional importance of, the association between glycogen availability and these processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spray forming process is a novel method of rapidly manufacturing tools and dies for stamping and injection operations. The process sprays molten tool steel from a set of arc spray guns onto a ceramic former to build up a thick steel shell. The volumetric contraction that occurs as the steel cools is offset by a volumetric expansion taking place within the sprayed steel, which allows the dimensional accurate tools to be produced. To ensure that the required phase transformation takes place, the temperature of the steel is regulated during spraying. The sprayed metal acts both as a source of mass and a source of heat and by adjusting the rate at which metal is sprayed; the surface temperature profile over the surface of the steel can be controlled. The temperature profile is measured using a thermal imaging camera and regulated by adjusting the rate at which the guns spray the steel. Because the temperature is regulated by adjusting the feed rate to an actuator that is moving over the surface, this is an example of mobile control, which is a class of distributed parameter control. The dynamic system has been controlled using a PI controller before. The paper describes the application of H∞ tracking type controller as the desire was for the average temperature to follow a desired profile. A study on the controllability of the underlying system was aimed at.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of the present study was to determine in human skeletal muscle whether a single exercise bout and 7 days of consecutive endurance (cycling) training 1) increased insulin-stimulated Akt pSer473and 2) altered the abundance of the protein tyrosine phosphatases (PTPases), PTP1B and SHP2. In healthy, untrained men (n = 8; 24 ± 1 yr), glucose infusion rate during a hyperinsulinemic euglycemic clamp, when compared with untrained values, was not improved 24 h following a single 60-min bout of endurance cycling but was significantly increased (~30%; P < 0.05) 24 h following completion of 7 days of exercise training. Insulin-stimulated Akt pSer473was ~50% higher (P < 0.05) 24 h following the acute bout of exercise, with this effect remaining after 7 days of training (P < 0.05). Insulin-stimulated insulin receptor and insulin receptor substrate-1 tyrosine phosphorylation were not altered 24 h after acute exercise and short-term training. Insulin did not acutely regulate the localization of the PTPases, PTP1B or SHP2, although cytosolic protein abundance of SHP2 was increased (P < 0.05; main effect) 24 h following acute exercise and short-term training. In conclusion, insulin-sensitive Akt pSer473and cytosolic SHP2 protein abundance are higher after acute exercise and short-term training, and this effect appears largely due to the residual effects of the last bout of prior exercise. The significance of exercise-induced alterations in cytosolic SHP2 and insulin-stimulated Akt pSer473on the improvement in insulin sensitivity requires further elucidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AS160 is an Akt substrate of 160 kDa implicated in the regulation of both insulin- and contraction-mediated GLUT4 translocation and glucose uptake. The effects of aerobic exercise and subsequent insulin stimulation on AS160 phosphorylation and the binding capacity of 14-3-3, a novel protein involved in the dissociation of AS160 from GLUT4 vesicles, in human skeletal muscle are unknown. Hyperinsulinemic-euglycemic clamps were performed on seven men at rest and immediately and 3 h after a single bout of cycling exercise. Skeletal muscle biopsies were taken before and after the clamps. The insulin sensitivity index calculated during the final 30 min of the clamp was 8.0 ± 0.8, 9.1 ± 0.5, and 9.2 ± 0.8 for the rest, postexercise, and 3-h postexercise trials, respectively. AS160 phosphorylation increased immediately after exercise and remained elevated 3 h after exercise. In contrast, the 14-3-3 binding capacity of AS160 and phosphorylation of Akt and AMP-activated protein kinase were only increased immediately after exercise. Insulin increased AS160 phosphorylation and 14-3-3 binding capacity and insulin receptor substrate-1 and Akt phosphorylation, but the response to insulin was not enhanced by prior exercise. In conclusion, the 14-3-3 binding capacity of AS160 is increased immediately after acute exercise in human skeletal muscle, but this is not maintained 3 h after exercise completion despite sustained AS160 phosphorylation. Insulin increases AS160 phosphorylation and 14-3-3 binding capacity, but prior exercise does not appear to enhance the response to insulin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the past, New South Wales cooperative housing societies made an important contribution to the financing of housing construction. In this paper the expansion and later contraction of the societies is explained. It is shown that, in recent times, not only have they suffered from a drying up of loan funding, but also a great number have operated at far below their possible level of efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines the physiological mechanisms responsible for differences in the amplitude of force fluctuations between young and old adults. Because muscle force is a consequence of motor unit activity, the potential mechanisms include both motor unit properties and the behavior of motor unit populations. The force fluctuations, however, depend not only on the age of the individual but also on the muscle group performing the task, the type and intensity of the muscle contraction, and the physical activity status of the individual. Computer simulations and experimental findings performed on tasks that involved single agonist and antagonist muscles suggest that differences in force fluctuations are not attributable to motor unit twitch force, motor unit number, or nonuniform activation of the agonist muscle, but that they are influenced by the variability and common modulation of motor unit discharge in both the agonist and antagonist muscles. Because the amplitude of the force fluctuations does not vary linearly with muscle activation, these results suggest that multiple mechanisms contribute to the differences in force fluctuations between young and old adults, although the boundary conditions for each mechanism remain to be determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hormone-sensitive lipase (HSL), an important regulatory enzyme for triacylglycerol hydrolysis within skeletal muscle, is controlled by β-adrenergic signaling as well as intrinsic factors related to contraction and energy turnover. In the current study, we tested the capacity of 5′AMP-activated protein kinase (AMPK) to suppress β-adrenergic stimulation of HSL activity. Eight male subjects completed 60 min of cycle exercise at 70% VO2 peak on two occasions: either with normal (CON) or low (LG) pre-exercise muscle glycogen content, which is known to enhance exercise-induced AMPK activity. Muscle samples were obtained before and immediately after exercise. Pre-exercise glycogen averaged 375 ± 35 and 163 ± 27 mmol·kg–1 dm for CON and LG, respectively. AMPK α-2 was not different between trials at rest and was increased (3.7-fold, P<0.05) by exercise during LG only. HSL activity did not differ between trials at rest and increased (0 min: 1.67 ± 0.13; 60 min: 2.60 ± 0.26 mmol·min–1·kg–1 dm) in CON. The exercise-induced increase in HSL activity was attenuated by AMPK α-2 activation in LG. The attenuated HSL activity during LG occurred despite higher plasma epinephrine levels (60 min: CON, 1.96 ± 0.29 vs LG, 4.25 ± 0.60 nM, P<0.05) compared with CON. Despite the attenuated HSL activity in LG, IMTG was decreased by exercise (0 min: 27.1 ± 2.0; 60 min: 22.5 ± 2.0 mmol.kg–1 dm, P<0.05), whereas no net reduction occurred in CON. To confirm the apparent effect of AMPK on HSL activity, we performed experiments in muscle cell culture. The epineprine-induced increase in HSL activity was totally attenuated (P<0.05) by AICAR administration in L6 myotubes. These data provide new evidence indicating that AMPK is a major regulator of skeletal muscle HSL activity that can override β-adrenergic stimulation. However, the increased IMTG degradation in LG suggests factors other than HSL activity are important for IMTG degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Characterization of expression of, and consequently also the acute exercise effects on, Na+,K+-ATPase isoforms in human skeletal muscle remains incomplete and was therefore investigated. Fifteen healthy subjects (eight males, seven females) performed fatiguing, knee extensor exercise at 40% of their maximal work output per contraction. A vastus lateralis muscle biopsy was taken at rest, fatigue and 3 and 24 h postexercise, and analysed for Na+,K+-ATPase 1, 2, 3, ß1, ß2 and ß3 mRNA and crude homogenate protein expression, using Real-Time RT-PCR and immunoblotting, respectively. Each individual expressed gene transcripts and protein bands for each Na+,K+-ATPase isoform. Each isoform was also expressed in a primary human skeletal muscle cell culture. Intense exercise (352 ± 69 s; mean ±S.E.M.) immediately increased 3 and ß2 mRNA by 2.4- and 1.7-fold, respectively (P < 0.05), whilst 1 and 2 mRNA were increased by 2.5- and 3.5-fold at 24 h and 3 h postexercise, respectively (P < 0.05). No significant change occurred for ß1 and ß3 mRNA, reflecting variable time-dependent responses. When the average postexercise value was contrasted to rest, mRNA increased for 1, 2, 3, ß1, ß2 and ß3 isoforms, by 1.4-, 2.2-, 1.4-, 1.1-, 1.0- and 1.0-fold, respectively (P < 0.05). However, exercise did not alter the protein abundance of the 1–3 and ß1–ß3 isoforms. Thus, human skeletal muscle expresses each of the Na+,K+-ATPase 1, 2, 3, ß1, ß2 and ß3 isoforms, evidenced at both transcription and protein levels. Whilst brief exercise increased Na+,K+-ATPase isoform mRNA expression, there was no effect on isoform protein expression, suggesting that the exercise challenge was insufficient for muscle Na+,K+-ATPase up-regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. The nucleoside intermediate 5'-aminoimidazole-4-carboxyamide-ribonucleoside (AICAR) activates skeletal muscle AMP-activated protein kinase (AMPK) and increases glucose uptake. The AMPK phosphorylates neuronal nitric oxide synthase (nNOS)µ in skeletal muscle fibres. There is evidence that both AMPK and nNOSµ may be involved in the regulation of contraction-stimulated glucose uptake.
2. We examined whether both AICAR- and contraction-stimulated glucose uptake were mediated by NOS in rat skeletal muscle.
3. Rat isolated epitrochlearis muscles were subjected in vitro to electrically stimulated contractions for 10 min and/or incubated in the presence or absence of AICAR (2 mmol/L) or the NOS inhibitor NG-monomethyl-l-arginine (l-NMMA; 100 µmol/L).
4. Muscle contraction significantly (P < 0.05) altered the metabolic profile of the muscle. In contrast, AICAR and l-NMMA had no effect on the metabolic profile of the muscle, except that AICAR increased muscle 5'-aminoimidazole-4-carboxyamide-ribonucleotide (ZMP) and AICAR content. Nitric oxide synthase inhibition caused a small but significant (P < 0.05) reduction in basal 3-O-methylglucose transport, which was observed in all treatments. 5'-Aminoimidazole-4-carboxyamide-ribonucleoside significantly increased (P < 0.05) glucose transport above basal, with NOS inhibition decreasing this slightly (increased by 209% above basal compared with 184% above basal with NOS inhibition). Contraction significantly increased glucose transport above basal, with NOS inhibition substantially reducing this (107% increase vs 31% increase). 5'-Aminoimidazole-4-carboxyamide-ribonucleoside plus contraction in combination were not additive on glucose transport.
5. These results suggest that NO plays a role in basal glucose uptake and may regulate contraction-stimulated glucose uptake. However, NOS/nitric oxide do not appear to be signalling intermediates in AICAR-stimulated skeletal muscle glucose uptake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated whether depressed muscle Na+-K+-ATPase activity with exercise reflected a loss of Na+-K+-ATPase units, the time course of its recovery postexercise, and whether this depressed activity was related to increased Na+-K+-ATPase isoform gene expression. Fifteen subjects performed fatiguing, knee extensor exercise at ~40% maximal work output per contraction. A vastus lateralis muscle biopsy was taken at rest, fatigue, 3 h, and 24 h postexercise and analyzed for maximal Na+-K+-ATPase activity via 3-O-methylfluorescein phosphatase (3-O-MFPase) activity, Na+-K+-ATPase content via [3H]ouabain binding sites, and Na+-K+-ATPase α1-, α2-, α3-, ß1-, ß2- and ß3-isoform mRNA expression by real-time RT-PCR. Exercise [352 (SD 267) s] did not affect [3H]ouabain binding sites but decreased 3-O-MFPase activity by 10.7 (SD 8)% (P < 0.05), which had recovered by 3 h postexercise, without further change at 24 h. Exercise elevated α1-isoform mRNA by 1.5-fold at fatigue (P < 0.05). This increase was inversely correlated with the percent change in 3-O-MFPase activity from rest to fatigue (%Δ3-O-MFPaserest-fatigue) (r = –0.60, P < 0.05). The average postexercise (fatigue, 3 h, 24 h) {alpha}1-isoform mRNA was increased 1.4-fold (P < 0.05) and approached a significant inverse correlation with %Δ3-O-MFPaserest-fatigue (r = –0.56, P = 0.08). Exercise elevated α2-isoform mRNA at fatigue 2.5-fold (P < 0.05), which was inversely correlated with %Δ3-O-MFPaserest-fatigue (r = –0.60, P = 0.05). The average postexercise α2-isoform mRNA was increased 2.2-fold (P < 0.05) and was inversely correlated with the %Δ3-O-MFPaserest-fatigue (r = –0.68, P < 0.05). Nonsignificant correlations were found between %Δ3-O-MFPaserest-fatigue and other isoforms. Thus acute exercise transiently decreased Na+-K+-ATPase activity, which was correlated with increased Na+-K+-ATPase gene expression. This suggests a possible signal-transduction role for depressed muscle Na+-K+-ATPase activity with exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of two amino acids, arginine which has a positively charged side-chain and glutamate which has a negatively charged side-chain on the Ca2+-activation properties of the contractile apparatus were examined in four structurally and functionally different types of skeletal muscle; long- and short-sarcomere fibres from the claw muscle of the yabby (a freshwater decapod crustacean), and fast- and slow-twitch fibres from limb muscles of the rat. Single skinned fibres were activated in carefully balanced solutions of different pCa (-log10[Ca2+]) that either contained the test solute (“test”) or not (“control”). The effect of phosphoarginine, a phosphagen that bears a nett negative charge, was also compared to the effects of arginine. Results show that (i) arginine (33-36 mmol l-1) significantly shifted the force–pCa curve by 0.08–0.13 pCa units in the direction of increased sensitivity to Ca2+-activated contraction in all fibre types; (ii) phosphoarginine (9–10 mmol l-1) induced a significant shift of the force–pCa curve by 0.18–0.24 pCa units in the direction of increased sensitivity to Ca2+ in mammalian fast- and slow-twitch fibres, but had no significant effects on the force–pCa relation in either long- or short-sarcomere crustacean fibres; (iii) glutamate (36–40 mmol l-1), like arginine affected the force–pCa relation of all fibre types investigated, but in the opposite direction, causing a significant decrease in the sensitivity to Ca2+-activated contraction by 0.08–0.19 pCa units; (iv) arginine, phosphoarginine and glutamate had little or no effect on the maximum Ca2+-activated force of crustacean and mammalian fibres. The results suggest that the opposing effects of glutamate and arginine are not related to simply their charge structure, but must involve complex interactions between these molecules, Ca2+ and the regulatory and other myofibrillar proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of the current study is to evaluate the cardioprotective effects of purified Salvia miltiorrhiza extract (PSME) on myocardial ischemia/reperfusion injury in isolated rat hearts. Hearts were excised and perfused at constant flow (7 – 9 ml · min−1) via the aorta. Non-recirculating perfusion with Krebs-Henseleit (KH) solution was maintained at 37°C and continuously gassed with 95% O2 and 5% CO2. KH solution with or without PSME (100 mg per liter solution) was used after 30-min zero-flow ischemia for the PSME and control group, respectively. Left ventricular (LV) developed pressure; its derivatives, diastolic pressure, and so on were continuously recorded via a pressure transducer attached to a polyvinylchloride balloon that was placed in the left ventricle through an incision in the left atrium. PSME treated hearts showed significant postischemic contractile function recovery (developed pressure recovered to 44.2 ± 4.9% versus 17.1 ± 5.7%, P<0.05; maximum contraction recovered to 57.2 ± 5.9% versus 15.1 ± 6.3%, P<0.001; maximum relaxation restored to 69.3 ± 7.3% versus 15.4 ± 6.3%, P<0.001 in the PSME and control group, respectively). Significant elevation in end-diastolic pressure, which indicated LV stiffening in PSME hearts might have resulted from the excess high dose of PSME used. Further study will be conducted on the potential therapeutic value with lower dose of PSME on prevention of ischemic heart disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Patellar tendon injury, a chronic overuse injury characterised by pain during tendon loading, is common in volleyball players and may profoundly restrict their ability to compete. This cross-sectional study investigated the association between performance factors and the presence of patellar tendon injury. These performance factors (sit and reach flexibility, ankle dorsiflexion range, jump height, ankle plantarflexor strength, years of volleyball competition and activity level) were measured in 113 male and female volleyball players. Patellar tendon health was determined by measures of pain and ultrasound imaging. The association between these performance factors and patellar tendon health (normal tendon, abnormal imaging without pain, abnormal imaging with pain) was investigated using analysis of variance. Only reduced ankle dorsiflexion range was associated with patellar tendinopathy (p < 0.05). As coupling between ankle dorsiflexion and eccentric contraction of the calf muscle is important in absorbing lower limb force when landing from a jump, reduced ankle dorsiflexion range may increase the risk of patellar tendinopathy.