31 resultados para computational complexity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstraction plays an essential role in the way the agents plan their behaviours, especially to reduce the computational complexity of planning in large domains. However, the effects of abstraction in the inverse process – plan recognition – are unclear. In this paper, we present a method for recognising the agent’s behaviour in noisy and uncertain domains, and across multiple levels of abstraction. We use the concept of abstract Markov policies in abstract probabilistic planning as the model of the agent’s behaviours and employ probabilistic inference in Dynamic Bayesian Networks (DBN) to infer the correct policy from a sequence of observations. When the states are fully observable, we show that for a broad and often-used class of abstract policies, the complexity of policy recognition scales well with the number of abstraction levels in the policy hierarchy. For the partially observable case, we derive an efficient hybrid inference scheme on the corresponding DBN to overcome the exponential complexity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a model of an environment to evaluate the behavior of an agent trying to hide from a pursuer is presented. The model computes the direction and the amount of protection provided by the environment. The computational complexity of this problem is improved by using a parallel implementation of this algorithm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protein mass spectrometry (MS) pattern recognition has recently emerged as a new method for cancer diagnosis. Unfortunately, classification performance may degrade owing to the enormously high dimensionality of the data. This paper investigates the use of Random Projection in protein MS data dimensionality reduction. The effectiveness of Random Projection (RP) is analyzed and compared against Principal Component Analysis (PCA) by using three classification algorithms, namely Support Vector Machine, Feed-forward Neural Networks and K-Nearest Neighbour. Three real-world cancer data sets are employed to evaluate the performances of RP and PCA. Through the investigations, RP method demonstrated better or at least comparable classification performance as PCA if the dimensionality of the projection matrix is sufficiently large. This paper also explores the use of RP as a pre-processing step prior to PCA. The results show that without sacrificing classification accuracy, performing RP prior to PCA significantly improves the computational time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of nonnegative blind source separation (NBSS) is addressed in this paper, where both the sources and the mixing matrix are nonnegative. Because many real-world signals are sparse, we deal with NBSS by sparse component analysis. First, a determinant-based sparseness measure, named D-measure, is introduced to gauge the temporal and spatial sparseness of signals. Based on this measure, a new NBSS model is derived, and an iterative sparseness maximization (ISM) approach is proposed to solve this model. In the ISM approach, the NBSS problem can be cast into row-to-row optimizations with respect to the unmixing matrix, and then the quadratic programming (QP) technique is used to optimize each row. Furthermore, we analyze the source identifiability and the computational complexity of the proposed ISM-QP method. The new method requires relatively weak conditions on the sources and the mixing matrix, has high computational efficiency, and is easy to implement. Simulation results demonstrate the effectiveness of our method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Identification of the most central node within a network is one of the primary problems in network analysis. Among various centrality measures for weighted networks, most are based on the assumption that information only spreads through the shortest paths. Then, a mathematical model of an amoeboid organism has been used by Physarum centrality to relax the assumption. However, its computational complexity is relatively high by finding competing paths between all pairs of nodes in networks. In this paper, with the idea of a ground node, an improved Physarum centrality is proposed by maintaining the feature of original measure with the performance is greatly enhanced. Examples and applications are given to show the efficiency and effectiveness of our proposed measure in weighted networks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of nonnegative blind source separation (NBSS) is addressed in this paper, where both the sources and the mixing matrix are nonnegative. Because many real-world signals are sparse, we deal with NBSS by sparse component analysis. First, a determinant-based sparseness measure, named D-measure, is introduced to gauge the temporal and spatial sparseness of signals. Based on this measure, a new NBSS model is derived, and an iterative sparseness maximization (ISM) approach is proposed to solve this model. In the ISM approach, the NBSS problem can be cast into row-to-row optimizations with respect to the unmixing matrix, and then the quadratic programming (QP) technique is used to optimize each row. Furthermore, we analyze the source identifiability and the computational complexity of the proposed ISM-QP method. The new method requires relatively weak conditions on the sources and the mixing matrix, has high computational efficiency, and is easy to implement. Simulation results demonstrate the effectiveness of our method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A web operating system is an operating system that users can access from any hardware at any location. A peer-to-peer (P2P) grid uses P2P communication for resource management and communication between nodes in a grid and manages resources locally in each cluster, and this provides a proper architecture for a web operating system. Use of semantic technology in web operating systems is an emerging field that improves the management and discovery of resources and services. In this paper, we propose PGSW-OS (P2P grid semantic Web OS), a model based on a P2P grid architecture and semantic technology to improve resource management in a web operating system through resource discovery with the aid of semantic features. Our approach integrates distributed hash tables (DHTs) and semantic overlay networks to enable semantic-based resource management by advertising resources in the DHT based upon their annotations to enable semantic-based resource matchmaking. Our model includes ontologies and virtual organizations. Our technique decreases the computational complexity of searching in a web operating system environment. We perform a simulation study using the Gridsim simulator, and our experiments show that our model provides enhanced utilization of resources, better search expressiveness, scalability, and precision. © 2014 Springer Science+Business Media New York.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In many network applications, the nature of traffic is of burst type. Often, the transient response of network to such traffics is the result of a series of interdependant events whose occurrence prediction is not a trivial task. The previous efforts in IEEE 802.15.4 networks often followed top-down approaches to model those sequences of events, i.e., through making top-view models of the whole network, they tried to track the transient response of network to burst packet arrivals. The problem with such approaches was that they were unable to give station-level views of network response and were usually complex. In this paper, we propose a non-stationary analytical model for the IEEE 802.15.4 slotted CSMA/CA medium access control (MAC) protocol under burst traffic arrival assumption and without the optional acknowledgements. We develop a station-level stochastic time-domain method from which the network-level metrics are extracted. Our bottom-up approach makes finding station-level details such as delay, collision and failure distributions possible. Moreover, network-level metrics like the average packet loss or transmission success rate can be extracted from the model. Compared to the previous models, our model is proven to be of lower memory and computational complexity order and also supports contention window sizes of greater than one. We have carried out extensive and comparative simulations to show the high accuracy of our model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The global diffusion of epidemics, computer viruses, and rumors causes great damage to our society. It is critical to identify the diffusion sources and timely quarantine them. However, most methods proposed so far are unsuitable for diffusion with multiple sources because of the high computational cost and the complex spatiotemporal diffusion processes. In this paper, based on the knowledge of infected nodes and their connections, we propose a novel method to identify multiple diffusion sources, which can address three main issues in this area: 1) how many sources are there? 2) where did the diffusion emerge? and 3) when did the diffusion break out? We first derive an optimization formulation for multi-source identification problem. This is based on altering the original network into a new network concerning two key elements: 1) propagation probability and 2) the number of hops between nodes. Experiments demonstrate that the altered network can accurately reflect the complex diffusion processes with multiple sources. Second, we derive a fast method to optimize the formulation. It has been proved that the proposed method is convergent and the computational complexity is O(mn log α) , where α = α (m,n) is the slowly growing inverse-Ackermann function, n is the number of infected nodes, and m is the number of edges connecting them. Finally, we introduce an efficient algorithm to estimate the spreading time and the number of diffusion sources. To evaluate the proposed method, we compare the proposed method with many competing methods in various real-world network topologies. Our method shows significant advantages in the estimation of multiple sources and the prediction of spreading time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Novelty detection arises as an important learning task in several applications. Kernel-based approach to novelty detection has been widely used due to its theoretical rigor and elegance of geometric interpretation. However, computational complexity is a major obstacle in this approach. In this paper, leveraging on the cutting-plane framework with the well-known One-Class Support Vector Machine, we present a new solution that can scale up seamlessly with data. The first solution is exact and linear when viewed through the cutting-plane; the second employed a sampling strategy that remarkably has a constant computational complexity defined relatively to the probability of approximation accuracy. Several datasets are benchmarked to demonstrate the credibility of our framework.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a class of nonsmooth convex optimization problems where the objective function is a convex differentiable function regularized by the sum of the group reproducing kernel norm and (Formula presented.)-norm of the problem variables. This class of problems has many applications in variable selections such as the group LASSO and sparse group LASSO. In this paper, we propose a proximal Landweber Newton method for this class of convex optimization problems, and carry out the convergence and computational complexity analysis for this method. Theoretical analysis and numerical results show that the proposed algorithm is promising.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vehicular ad hoc network (VANET) is an increasing important paradigm, which not only provides safety enhancement but also improves roadway system efficiency. However, the security issues of data confidentiality, and access control over transmitted messages in VANET have remained to be solved. In this paper, we propose a secure and efficient message dissemination scheme (SEMD) with policy enforcement in VANET, and construct an outsourcing decryption of ciphertext-policy attribute-based encryption (CP-ABE) to provide differentiated access control services, which makes the vehicles delegate most of the decryption computation to nearest roadside unit (RSU). Performance evaluation demonstrates its efficiency in terms of computational complexity, space complexity, and decryption time. Security proof shows that it is secure against replayable choosen-ciphertext attacks (RCCA) in the standard model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Malware replicates itself and produces offspring with the same characteristics but different signatures by using code obfuscation techniques. Current generation anti-virus engines employ a signature-template type detection approach where malware can easily evade existing signatures in the database. This reduces the capability of current anti-virus engines in detecting malware. In this paper, we propose a stepwise binary logistic regression-based dimensionality reduction techniques for malware detection using application program interface (API) call statistics. Finding the most significant malware feature using traditional wrapper-based approaches takes an exponential complexity of the dimension (m) of the dataset with a brute-force search strategies and order of (m-1) complexity with a backward elimination filter heuristics. The novelty of the proposed approach is that it finds the worst case computational complexity which is less than order of (m-1). The proposed approach uses multi-linear regression and the p-value of each individual API feature for selection of the most uncorrelated and significant features in order to reduce the dimensionality of the large malware data and to ensure the absence of multi-collinearity. The stepwise logistic regression approach is then employed to test the significance of the individual malware feature based on their corresponding Wald statistic and to construct the binary decision the model. When the selected most significant APIs are used in a decision rule generation systems, this approach not only reduces the tree size but also improves classification performance. Exhaustive experiments on a large malware data set show that the proposed approach clearly exceeds the existing standard decision rule, support vector machine-based template approach with complete data and provides a better statistical fitness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper concerns social learning modes and their effects on team performance. Social learning, such as by observing others' actions and their outcomes, allows members of a team to learn what other members know. Knowing what other members know can reduce task communication and co-ordination overhead, which helps the team to perform faster since members can devote their attention to their tasks. This paper describes agent-based simulation studies using a computational model that implements different social learning modes as parameters that can be controlled in the simulations. The results show that social learning from both direct and indirect observations positively contributes to learning about what others know, but the value of social learning is sensitive to prior familiarity such that minimum thresholds of team familiarity are needed to realise the benefits of social learning. This threshold increases with task complexity. These findings clarify the level of influence that sociality has on social learning and sets up a formal framework by which to conduct studies on how social context influences learning and group performance.