56 resultados para brain derived neurotrophic factor receptor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective:  Alterations in gene expression in bipolar disorder have been found in numerous studies. It is unclear whether such alterations are related to specific mood states. As a biphasic disorder, mood state-related alterations in gene expression have the potential to point to markers of disease activity, and trait-related alterations might indicate vulnerability pathways. This review therefore evaluated the evidence for whether gene expression in bipolar disorder is state or trait related.

Methods:  A systematic review, using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guideline for reporting systematic reviews, based on comprehensive database searches for studies on gene expression in patients with bipolar disorder in specific mood states, was conducted. We searched Medline, Embase, PsycINFO, and The Cochrane Library, supplemented by manually searching reference lists from retrieved publications.

Results:  A total of 17 studies were included, comprising 565 patients and 418 control individuals. Six studies evaluated intraindividual alterations in gene expression across mood states. Two of five studies found evidence of intraindividual alterations in gene expression between a depressed state and a euthymic state. No studies evaluated intraindividual differences in gene expression between a manic state and a euthymic state, while only one case study evaluated differences between a manic state and a depressed state, finding altered expression in seven genes. No study investigated intraindividual variations in gene expression between a euthymic state and multiple states of various polarities (depressive, manic, hypomanic). Intraindividual alterations in expression of the same genes were not investigated across studies. Only one gene (the brain-derived neurotrophic factor gene; BDNF) was investigated across multiple studies, showing no alteration between bipolar disorder patients and control individuals.

Conclusions:  There is evidence of some genes exhibiting state-related alterations in expression in bipolar disorder; however, this finding is limited by the lack of replication across studies. Further prospective studies are warranted, measuring gene expression in various affective phases, allowing for assessment of intraindividual differences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary - Vitamin D can improve muscle function and reduce falls, but whether it can strengthen neural connections within the brain and nervous system is not known. This 10-week randomised controlled trial indicates that treatment with 2,000 IU/day vitamin D3 does not significantly alter neuroplasticity relative to placebo in older adults.
Introduction - The purpose of this study was to examine the effects of vitamin D supplementation on neuroplasticity, serum brain-derived neurotrophic factor (BDNF) and muscle strength and function in older adults.
Methods - This was a 10-week double-blinded, placebo-controlled randomised trial in which 26 older adults with 25-hydroxyvitamin D [25OHD] concentrations 25–60 nmol/L were randomised to 2,000 IU/day vitamin D3 or matched placebo. Single- and paired-pulse transcranial magnetic stimulation applied over the motor cortex was used to assess changes in motor-evoked potentials (MEPs) and short-interval intracortical inhibition (SICI), as measures of corticospinal excitability and inhibition respectively, by recording electromyography (EMG) responses to stimulation from the wrist extensors. Changes in muscle strength, stair climbing power, gait (timed-up-and-go), dynamic balance (four square step test), serum 25(OH)D and BDNF concentrations were also measured.
Results - After 10 weeks, mean 25(OH)D levels increased from 46 to 81 nmol/L in the vitamin D group with no change in the placebo group. The vitamin D group experienced a significant 8–11 % increase in muscle strength and a reduction in cortical excitability (MEP amplitude) and SICI relative to baseline (all P < 0.05), but these changes were not significantly different from placebo. There was no effect of vitamin D on muscle power, function or BDNF.
Conclusions - Daily supplementation with 2,000 IU vitamin D3 for 10 weeks had no significant effect on neuroplasticity compared to placebo, but the finding that vitamin D treatment alone was associated with a decrease in corticospinal excitability and intracortical inhibition warrants further investigation as this suggests that it may improve the efficacy of neural transmission within the corticospinal pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current treatment for major depressive disorder (MDD), a prevalent and disabling mental illness, is inadequate, with two-thirds of people treated with first-line antidepressants not achieving remission. MDD is for many a chronic condition, often requiring multiple treatment attempts, thus development of additional interventions is urgently required. An emerging approach to improve non-response to antidepressants is the use of adjunctive nutraceuticals. The pathophysiology of MDD is considered to involve a range of abnormalities (monoamine impairment, neuro-endocrinological changes, reduced brain-derived neurotrophic factor, and cytokine alterations). By targeting an array of these key neurobiological pathways via specific nutraceuticals (S-adenosyl methionine; [SAMe], 5-HTP [active tryptophan], folinic acid [active folic acid], omega-3 fatty acids, and zinc), there is the potential to provide a more comprehensive therapeutic biological approach to treat depression. We are currently conducting a National Health and Medical Research Council funded study in Australia (APP1048222). The clinical trial is phase II/III, multi-site, 3-arm, 8-week, randomised, double-blind, placebo-controlled study using SAMe + folinic acid versus a combination nutraceutical (SAMe, 5-HTP, folinic acid, omega-3, and zinc) or matching placebo in 300 currently depressed participants with diagnosed MDD who are non-responsive to current antidepressants (ANZCTR, protocol number: 12613001300763). The results may provide evidence for a novel adjunctive neurobiological approach for treating depression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Investigate associations of TV viewing time and accelerometry-derived sedentary time with inflammatory and endothelial function biomarkers in children.

METHODS: Cross-sectional analysis of 164 7-10-year-old children. TV viewing time was assessed by parental proxy report and total and patterns of sedentary time accumulation (e.g. prolonged bouts) were assessed by accelerometry. C-reactive protein (CRP), homeostasis model assessment of insulin resistance, interleukin-2, -6, -8, -10, tumour necrosis factor alpha, adiponectin, resistin, brain-derived neurotrophic factor, soluble intercellular and vascular adhesion molecule 1, plasminogen activator inhibitor 1 and soluble E-selectin were assessed. Generalised linear models assessed the associations of TV viewing and sedentary time with biomarkers, adjusting for sex, waist circumference, moderate- to vigorous-intensity physical activity and diet density.

RESULTS: Each additional h week(-1) of TV viewing was associated with 4.4% (95% CI: 2.1, 6.7) greater CRP and 0.6% (0.2, 1.0) greater sVCAM-1 in the fully adjusted model. The association between frequency and duration of 5-10 min bouts of sedentary time and CRP was positive after adjustment for sex and waist circumference but attenuated after adjustment for diet density.

CONCLUSIONS: This study suggests that TV viewing was unfavourably associated with several markers of inflammation and endothelial dysfunction. The detrimental association between 5 and 10 min bouts of sedentary time and CRP approached significance, suggesting that further research with a stronger study design (longitudinal and/or experimental) is needed to better understand how the accumulation of sedentary time early in life may influence short and longer term health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rett syndrome, commonly associated with mutations of the methyl CpG-binding protein 2 (MECP2) gene, is characterised by an apparently normal early postnatal development followed by deterioration of acquired cognitive and motor coordination skills in early childhood. To evaluate whether environmental factors may influence the disease outcome of Rett syndrome, we tested the effect of environmental enrichment from 4 weeks of age on the behavioural competence of mutant mice harboring a Mecp2 tm1Tam-null allele. Our findings show that enrichment improves motor coordination in heterozygous Mecp2 +/− females but not Mecp2 −/y males. Standard-housed Mecp2 +/− mice had an initial motor coordination deficit on the accelerating rotarod, which improved with training then deteriorated in subsequent weeks. Enrichment resulted in a significant reduction in this coordination deficit in Mecp2 +/− mice, returning the performance to wild-type levels. Brain-derived neurotrophic factor (BDNF) protein levels were 75 and 85% of wild-type controls in standard-housed and environmentally enriched Mecp2 +/− cerebellum, respectively. Mecp2 −/y mice showed identical deficits of cerebellar BDNF (67% of wild-type controls) irrespective of their housing environment. Our findings demonstrate a positive impact of environmental enrichment in a Rett syndrome model; this impact may be dependent on the existence of one functional copy of Mecp2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The rapid ageing of the population is becoming an area of great concern, both globally and in Australia. On a societal level, the cost of supporting an ageing demographic, particularly with their associated medical requirements, is becoming an ever increasing burden that is only predicted to rise in the foreseeable future. The progressive decline in individuals' cognitive ability as they age, particularly with respect to the ever increasing incidence of Alzheimer's Disease (AD) and other cognitive complications, is in many respects one of the foundation stones of these concerns. There have been numerous observational studies reporting on the positive effects that aerobic exercise and the Mediterranean diet appear to have on improving cognitive ability. However, the ability of such interventions to improve cognitive ability, or even reduce the rate of cognitive ageing, has not been fully examined by substantial interventional studies within an ageing population. Methods: The LIILAC trial will investigate the potential for cognitive change in a cohort of cognitively healthy individuals, between the ages of 60 and 90 years, living in independent accommodation within Australian aged care facilities. This four-arm trial will investigate the cognitive changes which may occur as a result of the introduction of aerobic exercise and/or Mediterranean diet into individuals' lifestyles, as well as the mechanisms by which these changes may be occurring. Participants will be tested at baseline and 6 months on a battery of computer based cognitive assessments, together with cardiovascular and blood biomarker assessments. The cardiovascular measures will assess changes in arterial stiffness and central pulse pressures, while the blood measures will examine changes in metabolic profiles, including brain derived neurotrophic factor (BDNF), inflammatory factors and insulin sensitivity. Conclusion: It is hypothesised that exercise and Mediterranean diet interventions, both individually and in combination, will result in improvements in cognitive performance compared with controls. Positive findings in this research will have potential implications for the management of aged care, particularly in respect to reducing the rate of cognitive decline and the associated impacts both on the individual and the broader community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Recent meta-analyses confirm a relationship between diet quality and both depression and cognitive health in adults. While the biological pathways that underpin these relationships are likely multitudinous, extensive evidence from animal studies points to the involvement of the hippocampus. The aim of this study was to examine the association between dietary patterns and hippocampal volume in humans, and to assess whether diet was associated with differential rates of hippocampal atrophy over time. Methods: Data were drawn from the Personality and Total Health Through Life Study and focused on a subsample of the cohort (n = 255) who were aged 60-64 years at baseline in 2001, completed a food frequency questionnaire, and underwent two magnetic resonance imaging scans approximately 4 years apart. Longitudinal generalized estimating equation linear regression models were used to assess the association between dietary factors and left and right hippocampal volumes over time. Results: Every one standard deviation increase in healthy "prudent" dietary pattern was associated with a 45.7 mm3 (standard error 22.9 mm3) larger left hippocampal volume, while higher consumption of an unhealthy "Western" dietary pattern was (independently) associated with a 52.6 mm3 (SE 26.6 mm3) smaller left hippocampal volume. These relationships were independent of covariates including age, gender, education, labour-force status, depressive symptoms and medication, physical activity, smoking, hypertension and diabetes. While hippocampal volume declined over time, there was no evidence that dietary patterns influenced this decline. No relationships were observed between dietary patterns and right hippocampal volume. Conclusions: Lower intakes of nutrient-dense foods and higher intakes of unhealthy foods are each independently associated with smaller left hippocampal volume. To our knowledge, this is the first human study to demonstrate associations between diet and hippocampal volume concordant with data previously observed in animal models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: We examined the cumulative effect of 4 consecutive bouts of non-invasive brain stimulation on corticospinal plasticity and motor performance, and whether these responses were influenced by the brain-derived neurotrophic factor (BDNF) polymorphism.

METHODS: In a randomized double-blinded cross-over design, changes in strength and indices of corticospinal plasticity were analyzed in 14 adults who were exposed to 4 consecutive sessions of anodal and sham transcranial direct current stimulation (tDCS). Participants also undertook a blood sample for BDNF genotyping (N=13).

RESULTS: We observed a significant increase in isometric wrist flexor strength with transcranial magnetic stimulation revealing increased corticospinal excitability, decreased silent period duration, and increased cortical voluntary activation compared to sham tDCS.

DISCUSSION: The results show that 4 consecutive sessions of anodal tDCS increased cortical voluntary activation manifested as an improvement in strength. Induction of corticospinal plasticity appears to be influenced by the BDNF polymorphism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibromyalgia (FM) is a prevalent disorder defined by the presence of chronic widespread pain in association with fatigue, sleep disturbances and cognitive dysfunction. Recent studies indicate that bipolar spectrum disorders frequently co-occur in individuals with FM. Furthermore, shared pathophysiological mechanisms anticipate remarkable phenomenological similarities between FM and BD. A comprehensive search of the English literature was carried out in the Pubmed/MEDLINE database through May 10th, 2015 to identify unique references pertaining to the epidemiology and shared pathophysiology between FM and bipolar disorder (BD). Overlapping neural circuits may underpin parallel clinical manifestations of both disorders. Fibromyalgia and BD are both characterized by functional abnormalities in the hypothalamic-pituitary-adrenal axis, higher levels of inflammatory mediators, oxidative and nitrosative stress as well as mitochondrial dysfunction. An over-activation of the kynurenine pathway in both illnesses drives tryptophan away from the production of serotonin and melatonin, leading to affective symptoms, circadian rhythm disturbances and abnormalities in pain processing. In addition, both disorders are associated with impaired neuroplasticity (e.g., altered brain-derived neurotrophic factor signaling). The recognition of the symptomatic and pathophysiological overlapping between FM and bipolar spectrum disorders has relevant etiological, clinical and therapeutic implications that deserve future research consideration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rate of age-associated cognitive decline varies considerably between individuals. It is important, both on a societal and individual level, to investigate factors that underlie these differences in order to identify those which might realistically slow cognitive decline. Physical activity is one such factor with substantial support in the literature. Regular exercise can positively influence cognitive ability, reduce the rate of cognitive aging, and even reduce the risk of Alzheimer's disease (AD) and other dementias. However, while there is substantial evidence in the extant literature for the effect of exercise on cognition, the processes that mediate this relationship are less clear. This review examines cardiovascular health, production of brain derived neurotrophic factor (BDNF), insulin sensitivity, stress, and inflammation as potential pathways, via which exercise may maintain or improve cognitive functioning, and may be particularly pertinent in the context of the aging brain. A greater understanding of these mechanisms and their potential relationships with exercise and cognition will be invaluable in providing biomarkers for investigating the efficacy of differing exercise regimes on cognitive outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify genes involved in the central regulation of energy balance, we compared hypothalamic mRNA from lean and obese Psammomys obesus, a polygenic model of obesity, using differential display PCR. One mRNA transcript was observed to be elevated in obese, and obese diabetic, P. obesus compared with lean animals and was subsequently found to be increased 4-fold in the hypothalamus of lethal yellow agouti (Ay/a) mice, a murine model of obesity and diabetes. Intracerebroventricular infusion of antisense oligonucleotide targeted to this transcript selectively suppressed its hypothalamic mRNA levels and resulted in loss of body weight in both P. obesus and Sprague Dawley rats. Reductions in body weight were mediated by profoundly reduced food intake without a concomitant reduction in metabolic rate. Yeast two-hybrid screening, and confirmation in mammalian cells by bioluminescence resonance energy transfer analysis, demonstrated that the protein it encodes interacts with endophilins, mediators of synaptic vesicle recycling and receptor endocytosis in the brain. We therefore named this transcript Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1 (SGIP1). SGIP1 encodes a large proline-rich protein that is expressed predominantly in the brain and is highly conserved between species. Together these data suggest that SGIP1 is an important and novel member of the group of neuronal molecules required for the regulation of energy homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Granulocyte colony-stimulating factor (G-CSF) is a key regulator of granulopoiesis via stimulation of a specific cell-surface receptor, the G-CSF-R, found on hematopoietic progenitor cells as well as neutrophilic granulocytes. It is perhaps not surprising, therefore, that mutations of the G-CSF-R has been implicated in several clinical settings that affect granulocytic differentiation, particularly severe congenital neutropenia, myelodysplastic syndrome and acute myeloid leukemia. However, other studies suggest that signalling via the G-CSF-R is also involved in a range of other malignancies. This review focuses on the molecular mechanisms through which the G-CSF-R contributes to disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Granulocyte colony-stimulating factor (G-CSF) is the major regulator of neutrophil production. Studies in cell lines have established that conserved tyrosines Y704, Y729, Y744, Y764 within the cytoplasmic domain of G-CSF receptor (G-CSF-R) contribute significantly to G-CSF-induced proliferation, differentiation and cell survival. However, it is unclear whether these tyrosines are equally important under more physiological conditions. Here, we investigated how individual G-CSF-R tyrosines affect G-CSF responses of primary myeloid progenitors. We generated GCSF- R deficient mice and transduced their bone marrow cells with tyrosine "null" mutant (mO), single tyrosine "add back" mutants or wild type (WT) receptors. G-CSFinduced responses were determined in primary colony assays, serial replatings and suspension cultures. We show that removal of all tyrosines had no major influence on primary colony growth. However, adding back Y764 strongly enhanced proliferativeresponses, which was reverted by inhibition of ERK activitity. Y729, which we found to be associated with the suppressor of cytokine signaling, SOCS3, had a negative effect on colony formation. After repetitive replatings, the clonogenic capacities of cells expressing mO gradually dropped compared to WT. The presence of Y729, but also Y704 and Y744, both involved in activation of STAT3, further reduced replating
efficiencies. Conversely, Y764 greatly elevated the clonogenic abilities of myeloid progenitors, resulting in a >104–fold increase of colony forming cells over mO after the fifth replating. These findings suggest that tyrosines in the cytoplasmic domain of G-CSF-R, although dispensable for G-CSF-induced colony growth, recruit signaling mechanisms that regulate the maintenance and outgrowth of myeloid progenitor cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most severe congenital neutropenia (SCN) cases possess constitutive neutrophil elastase mutations; a smaller cohort has acquired mutations truncating the granulocyte colony-stimulating factor receptor (G-CSF-R). We have described a case with constitutive extracellular G-CSF-R mutation hyporesponsive to ligand. Here we report two independent acquired G-CSF-R truncation mutations and a novel constitutive neutrophil elastase mutation in this patient. Co-expression of a truncated receptor chain restored STAT5 signalling responses of the extracellular G-CSF-R mutant, while constitutively-active STAT5 enhanced its proliferative capacity. These data add to our knowledge of SCN and further highlight the importance of STAT5 in mediating proliferative responses to G-CSF.