55 resultados para bacterial invasion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a new computational method for guanine (G) and cytosine (C), or GC, content profiling based on the idea of multiple resolution sampling (MRS). The benefit of our new approach over existing techniques follows from its ability to locate significant regions without prior knowledge of the sequence, nor the features being sought. The use of MRS has provided novel insights into bacterial genome composition. Key findings include those that are related to the core composition of bacterial genomes, to the identification of large genomic islands (in Enterobacterial genomes), and to the identification of surface protein determinants in human pathogenic organisms (e.g., Staphylococcus genomes). We observed that bacterial surface binding proteins maintain abnormal GC content, potentially pointing to a viral origin. This study has demonstrated that GC content holds a high informational worth and hints at many underlying evolutionary processes. For online Supplementary Material, see www.liebertonline.com.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial genomes reflect their adaptation strategies through nucleotide usage trends found in their chromosome composition. Bacteria, unlike eukaryotes contain a wide range of genomic G + C. This wide variability may be viewed as a response to environmental adaptation. Two overarching trends are observed across bacterial genomes, the first, correlates genomic G + C to environmental niches and lifestyle, while the other utilizees intra-genomic G + C incongruence to delineate horizontally transferred material. In this review, we focus on the influence of several properties including biochemical, genetic flows, selection biases, and the biochemical-energetic properties shaping genome composition. Outcomes indicate a trend toward high G + C and larger genomes in free-living organisms, as a result of more complex and varied environments (higher chance for horizontal gene transfer). Conversely, nutrient limiting and nutrient poor environments dictate smaller genomes of low GC in attempts to conserve replication expense. Varied processes including translesion repair mechanisms, phage insertion and cytosine degradation has been shown to introduce higher AT in genomic sequences. We conclude the review with an analysis of current bioinformatics tools seeking to elicit compositional variances and highlight the practical implications when using such techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The invention provides a compound including : A core having a first face and a second face; A binding portion attached to the first face of the core, wherein the binding portion is capable of binding to an anionic group present in a cell membrane of a microorganism; and A hydrophobic portion attached to the second face of the core, wherein the hydrophobic portion is capable of interacting with the cell membrane of the microorganism; and The core comprises a dioxolane norbornane / norbornene of formula (II): Or a salt or ion thereof, wherein R' is a moiety forming part of a hydrophobic portion; R2 is a first binding portion; and R3 is a seconding binding portion. The invention also provides compositions including at least one such compound. The invention also provides methods and uses for treatment or prophylaxis of infection of a mammal by a microorganism, and methods and uses for treating or preventing contamination of a substrate by a microorganism, using the compounds and compositions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents a model of growth of naturally occurring heterotrophic bacteria in the bulk water phase in the absence of disinfectant. The model considers growth with carbon, phosphorus, and nitrogen balance, death and lysis of bacteria, and conversion of less biodegradable organic carbon to assimilable organic carbon. Experimental data from two raw and two treated waters were used to test the model. The model describes the increase of live and dead bacterial cells in the water phase, and its output closely matches the experimental data. Such a model has the ability to characterize water nutrient status as well as to predict behavior of indigenous heterotrophic bacteria. The ability to predict bacterial population dynamics with respect to nutrients is beneficial for water treatment optimization. The model, based on microbiological measurements, helps to characterize treated water quality and project performance in terms of water quality into a distribution system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two laboratory-scale membrane bioreactor systems were investigated to treat high saline wastewater containing 1,000 mg/L COD and 32 g/L NaCl, namely: the yeast membrane bioreactor (YMBR) and the bacterial membrane bioreactor (BMBR). COD removal of both processes was above 90% at a hydraulic retention time (HRT) of 5 hours (volumetric loading of 5 kg COD/m³.d), sludge retention time (SRT) of 50 days (the MLSS of above 14 g/L and the F/M of 0.4 d-1). Under these operating conditions, the YMBR could run at a ten-fold lower transmembrane pressure with significantly reduced membrane fouling rate compared to BMBR. This may be because of low production of adhesive extracellular polymers (ECP) and the secondary filtration layer formed from large yeast cells. ECP production of bacterial sludge was increased considerably at high salt concentrations (32 g/L and 45 g/L) and long SRTs. For the bacterial sludge, the increased salinity led to increase in ECP, whereas the ECP content of the yeast sludge was relatively small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteria use a variety of secreted virulence factors to manipulate host cells, thereby causing significant morbidity and mortality. We report a mechanism for the long-distance delivery of multiple bacterial virulence factors, simultaneously and directly into the host cell cytoplasm, thus obviating the need for direct interaction of the pathogen with the host cell to cause cytotoxicity. We show that outer membrane–derived vesicles (OMV) secreted by the opportunistic human pathogen Pseudomonas aeruginosa deliver multiple virulence factors, including b-lactamase, alkaline phosphatase, hemolytic phospholipase C, and Cif, directly into the host cytoplasm via fusion of OMV with lipid rafts in the host plasma membrane. These virulence factors enter the cytoplasm of the host cell via N-WASP–mediated actin trafficking, where they rapidly distribute to specific subcellular locations to affect host cell biology. We propose that secreted virulence factors are not released individually as naked proteins into the surrounding milieu where they may randomly contact the surface of the host cell, but instead bacterial derived OMV deliver multiple virulence factors simultaneously and directly into the host cell cytoplasm in a coordinated manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key process in the lifecycle of the malaria parasite Plasmodium falciparum is the fast invasion of human erythrocytes. Entry into the host cell requires the apical membrane antigen 1 (AMA-1), a type I transmembrane protein located in the micronemes of the merozoite. Although AMA-1 is evolving into the leading blood-stage malaria vaccine candidate, its precise role in invasion is still unclear. We investigate AMA-1 function using live video microscopy in the absence and presence of an AMA-1 inhibitory peptide. This data reveals a crucial function of AMA-1 during the primary contact period upstream of the entry process at around the time of moving junction formation. We generate a Plasmodium falciparum cell line that expresses a functional GFP-tagged AMA-1. This allows the visualization of the dynamics of AMA-1 in live parasites. We functionally validate the ectopically expressed AMA-1 by establishing a complementation assay based on strain-specific inhibition. This method provides the basis for the functional analysis of essential genes that are refractory to any genetic manipulation. Using the complementation assay, we show that the cytoplasmic domain of AMA-1 is not required for correct trafficking and surface translocation but is essential for AMA-1 function. Although this function can be mimicked by the highly conserved cytoplasmic domains of P. vivax and P. berghei, the exchange with the heterologous domain of the microneme protein EBA-175 or the rhoptry protein Rh2b leads to a loss of function. We identify several residues in the cytoplasmic tail that are essential for AMA-1 function. We validate this data using additional transgenic parasite lines expressing AMA-1 mutants with TY1 epitopes. We show that the cytoplasmic domain of AMA-1 is phosphorylated. Mutational analysis suggests an important role for the phosphorylation in the invasion process, which might translate into novel therapeutic strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malaria is a major human health problem and is responsible for over 2 million deaths per year. It is caused by a number of species of the genus Plasmodium, and Plasmodium falciparum is the causative agent of the most lethal form. Consequently, the development of a vaccine against this parasite is a priority. There are a number of stages of the parasite life cycle that are being targeted for the development of vaccines. Important candidate antigens include proteins on the surface of the asexual merozoite stage, the form that invades the host erythrocyte. The development of methods to manipulate the genome of Plasmodium species has enabled the construction of gain-of-function and loss-of-function mutants and provided new strategies to analyse the role of parasite proteins. This has provided new information on the role of merozoite antigens in erythrocyte invasion and also allows new approaches to address their potential as vaccine candidates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodium falciparum causes the most lethal form of malaria in humans and is responsible for over two million deaths per year. The development of a vaccine against this parasite is an urgent priority and potential protein targets include those on the surface of the asexual merozoite stage, the form that invades the host erythrocyte. The development of methods to transfect P. falciparum has enabled the construction of gain-of-function and loss-of-function mutants and provided new strategies to analyse the role of parasite proteins. In this review, we describe the use of this technology to examine the role of merozoite antigens in erythrocyte invasion and to address their potential as vaccine candidates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The in situ physiology of the actinobacterial bulking and foaming filamentous bacterium "Nostocoida limicola" II was studied by fluorescence in situ hybridization/microautoradiography. Substrate assimilation patterns of pure cultures of this bacterium were different to those seen in activated sludge biomass samples. There was no evidence to suggest that "N. limicola" II preferred hydrophobic substrates, but evidence was produced to support the view that it is metabolically active under anaerobic conditions in activated sludge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gram-negative bacterial peptidoglycan is specifically recognized by the host intracellular sensor NOD1, resulting in the generation of innate immune responses. Although epithelial cells are normally refractory to external stimulation with peptidoglycan, these cells have been shown to respond in a NOD1-dependent manner to Gram-negative pathogens that can either invade or secrete factors into host cells. In the present work, we report that Gram-negative bacteria can deliver peptidoglycan to cytosolic NOD1 in host cells via a novel mechanism involving outer membrane vesicles (OMVs). We purified OMVs from the Gram-negative mucosal pathogens: Helicobacter pylori, Pseudomonas aeruginosa and Neisseria gonorrhoea and demonstrated that these peptidoglycan containing OMVs upregulated NF-κB and NOD1-dependent responses in vitro. These OMVs entered epithelial cells through lipid rafts thereby inducing NOD1-dependent responses in vitro. Moreover, OMVs delivered intragastrically to mice-induced innate and adaptive immune responses via a NOD1-dependent but TLR-independent mechanism. Collectively, our findings identify OMVs as a generalized mechanism whereby Gram-negative bacteria deliver peptidoglycan to cytosolic NOD1. We propose that OMVs released by bacteria in vivo may promote inflammation and pathology in infected hosts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstracts: Lipid rafts are defined as specialized, dynamic microdomains that can be found in plasma membrane, and they are enriched with cholesterol and sphingolipids. Since lipid rafts’ first debut in the mid 1990’s, their existence, function and biological relevance have been a subject of intense scrutiny within the scientific community. Throughout this debate, we have learned a great deal regarding how cargos (both pathogens and cellular factors) are transported into and out of the cell through raft-dependent or raft-independent pathways. It is now apparent that a number of toxins, bacterial-, and viral-pathogens are able to exploit cholesterol and/or lipid rafts to gain a foot hold in their target hosts. The objective of this review is to describe our current appreciation on how selected pathogens utilise cholesterol and/or lipid rafts to support their propagation and to speculate on how some of these observations can be explored for the development of novel strategies that target plasma membrane lipids to control the spread of these viral- and bacterial-pathogens.