180 resultados para artificial neural network (ANN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automotive is one of the major manufacturing industries in Australia that requires extensive reliability test for the components used in vehicles. To achieve a shorter time-to-market and a highly reliable product while reducing the amount of physical prototyping, there is a growing need for better understanding on the effect that the design parameters have on the degradation of the product. This paper presents comprehensive descriptions of applying Artificial Neural Network (ANN) to capture the relationships between design and degradation. Consequently, two models of different practical significance are created as the result of the work. The vision of the models is to be used by the testers and designers as a guideline in design evaluation, so that time-consuming and expensive iterations of the product developmental cycle can be reduced substantially. The degradation of the folding force of a mechanical system is used to illustrate our approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been an important and challenging task to classify and evaluate the contents in wool blends. Quantitative characterisation of animal fibre scale patterns has attracted considerable attention, since it is the major evidence for identification and subsequent classification purpose. Although techniques such as imaging processing and linear demarcation functions have been used to identify unknown fibre type with some success, a more comprehensive approach is required to perform this task. In this paper, a new approach is presented, which employs non-linear demarcation functions by using an artificial neural network (ANN). Based on scale pattern features extracted by using image processing techniques the artificial neural network (ANN) model is to classify mohair and merino fibres. It is observed that the techniques developed in this work are very effective and have the potential to be applied to other animal fibres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many policy decisions for agricultural management in the coastal region closely depend on the extent of intrusion of sea water. In this study, Artificial Neural Network (ANN) is used to model the spatial variation of Electrical Conductivity to determine the extent of sea water intrusion in the coastal area of Brisbane, Australia. Quarterly EC data obtained from the observation (monitoring) wells located along the coast is used for training ANN architecture. The study demonstrates that ANN is able to model the spatial variation of EC with very good accuracy (even with very less training records) when some spatial information is used as one of the inputs in the network training. The results considerable improvement when compared with the network trained without the distance information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to establish, train, validate, and test artificial neural network (ANN) models for modelling risk allocation decision-making process in public-private partnership (PPP) projects, mainly drawing upon transaction cost economics. An industry-wide questionnaire survey was conducted to examine the risk allocation practice in PPP projects and collect the data for training the ANN models. The training and evaluation results, when compared with those of using traditional MLR modelling technique, show that the ANN models are satisfactory for modelling risk allocation decision-making process. The empirical evidence further verifies that it is appropriate to utilize transaction cost economics to interpret risk allocation decision-making process. It is recommended that, in addition to partners' risk management mechanism maturity level, decision-makers, both from public and private sectors, should also seriously consider influential factors including partner's risk management routines, partners' cooperation history, partners' risk management commitment, and risk management environmental uncertainty. All these factors influence the formation of optimal risk allocation strategies, either by their individual or interacting effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we apply a computational intelligence method for tunnelling settlement prediction. A supervised feed forward back propagation neural network is used to predict the surface settlement during twin-tunnelling while surface buildings are considered in the models. The performance of the statistical neural network structure is tested on a dataset provided by numerical parametric studies conducted by ABAQUS software based on Shiraz line 1 metro data. Six input variables are fed to neural network model for predicting the surface settlement. These include tunnel center depth, distance between centerlines of twin tunnels, buildings width and building bending stiffness, and building weight and distance to tunnel centerline. Simulation results indicate that the proposed NN models are able to accurately predict the surface settlement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of a numerical exercise, substituting a numerical operator by an artificial neural network (ANN) are presented in this paper. The numerical operator used is the explicit form of the finite difference (FD) scheme. The FD scheme was used to discretize the one-dimensional transport equation, which included both the advection and dispersion terms. Inputs to the ANN are the FD representation of the transport equation, and the concentration was designated as the output. Concentration values used for training the ANN were obtained from analytical solutions. The numerical operator was reconstructed from a back calculation of the weights of the ANN. Linear transfer functions were used for this purpose. The ANN was able to accurately recover the velocity used in the training data, but not the dispersion coefficient. This capability was improved when numerical dispersion was taken into account; however, it is limited to the condition: C/P<0.5 , where C is the Courant number and P , the Peclet number (i.e., the restriction imposed by the Neumann stability condition).