33 resultados para arsenite, leiteite, reinerite, Raman Spectroscopy, single crystal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-crystal trigonal (t) Se nanobelts have been synthesized on a large scale by reducing SeO2 with glucose at 160 °C. Electron microscopy images show that the nanobelts are 80 nm in diameter, 25 nm in thickness, and up to several hundreds of micrometers in length. HRTEM images prove that the nanobelts are single crystals and preferentially grow along the [001] direction. The time-dependent TEM images revealed that the formation and growth of t-Se nanobelts were governed by a solid−solution−solid growth mechanism. The redox reaction directly produced amorphous (α) Se nanoparticles under hydrothermal conditions. t-Se nanobelts were formed by dissolution and recrystallization of the initial α-Se nanoparticles under the functional capping of poly(vinylpyrrolidone) (PVP). The nanobelts obtained exhibit a quantum size effect in optical properties, showing a blue shift of the band gap and direct transitions relative to the values of bulk t-Se.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atomically thin boron nitride (BN) nanosheets have been found to be excellent substrates for noble metal particles enabled surface enhanced Raman spectroscopy (SERS), thanks to their good adsorption of aromatic molecules, high thermal stability and weak Raman scattering. Faceted gold (Au) nanoparticles have been synthesized on BN nanosheets using a simple but controllable and reproducible sputtering and annealing method. The size and density of the Au particles can be controlled by sputtering time, current and annealing temperature etc. Under the same sputtering and annealing conditions, the Au particles on BN of different thicknesses show various sizes because the surface diffusion coefficients of Au depend on the thickness of BN. Intriguingly, decorated with similar morphology and distribution of Au particles, BN nanosheets exhibit better Raman enhancements than silicon substrates as well as bulk BN crystals. Additionally, BN nanosheets show no noticeable SERS signal and hence cause no interference to the Raman signal of the analyte. The Au/BN substrates can be reused by heating in air to remove the adsorbed analyte without loss of SERS enhancement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface enhanced Raman spectroscopy (SERS) is a useful multidisciplinary analytic technique. However, it is still a challenge to produce SERS substrates that are highly sensitive, reproducible, stable, reusable, and scalable. Herein, we demonstrate that atomically thin boron nitride (BN) nanosheets have many unique and desirable properties to help solve this challenge. The synergic effect of the atomic thickness, high flexibility, stronger surface adsorption capability, electrical insulation, impermeability, high thermal and chemical stability of BN nanosheets can increase the Raman sensitivity by up to two orders, and in the meantime attain long-term stability and extraordinary reusability not achievable by other materials. These advances will greatly facilitate the wider use of SERS in many fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here, we for the first time synthesized bimetallic Cu/Ag dendrites on graphene paper (Cu/Ag@G) using a facile electrodeposition method to achieve efficient SERS enhancement. Cu/Ag@G combined the electromagnetic enhancement of Cu/Ag dendrites and the chemical enhancement of graphene. SERS was ascribed to the rough metal surface, the synergistic effect of copper and silver nanostructures and the charge transfer between graphene and the molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solid-state structures of the previously known para-substituted diphenyltellurium dichlorides, (p-XC6H4)2TeCl2 (X=H (1), Me (2), MeO (3)) were investigated by 125Te MAS NMR spectroscopy and in case of 2 by single crystal X-ray diffraction. The 125Te-NMR shielding anisotropy (SA) was studied by tensor analyses based on relative intensities of the observed spinning sidebands. Solid-state NMR parameters, namely the isotropic chemical shift (δiso), anisotropy (ζ) and asymmetry (η), were discussed in relation to the molecular structures established by X-ray crystallography. The asymmetry (η) was found to be particularly sensitive to structural differences stemming mostly from the diverse secondary Te...Cl interactions, but no correlation with geometric parameters could be established.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Above 110 °C the symmetric di-methyl-pyrrolidinium iodide salt forms a plastic crystal phase of interest in the area of new electrolyte materials. In this study ab initio calculations of this material has been conducted in order to assign the vibrational spectra. Raman spectroscopy measurements on the solid salt as well as on the salt dissolved in different solvents has been performed and these have been compared to the theoretical spectra. Furthermore, Raman spectra as a function of temperature have been recorded to investigate possible changes in inter-ionic interaction and/or structure through the phase transition. 1H NMR linewidth measurements as a function of temperature showed a large decrease in linewidth above 100 °C, attributed here to an increase in mobility in agreement with a previously reported phase transition at ~110 °C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Doping lithium bis(trifluoromethanesulfonyl)amide (Li[NTf2]) into the N-ethyl,N′-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide ([C2mpyr][NTf2]) plastic crystal material has previously indicated order of magnitude enhancements in ion transport and conductivity over pure [C2mpyr][NTf2]. Recently, conductivity enhancements in this ionic plastic crystal induced by SiO2 nanoparticles have also been reported. In this work the inclusion of SiO2 nanoparticles in Li ion doped [C2mpyr][NTf2] has been investigated over a wide temperature range by differential scanning calorimetry (DSC), impedance spectroscopy, positron annihilation lifetime spectroscopy (PALS), Raman spectroscopy, NMR spectroscopy and scanning electron microscopy (SEM). Solid state 1H NMR indicates that the addition of the nanoparticles increases the mobility of the [C2mpyr] cation and positron lifetime spectroscopy (PALS) measurements indicate an increase in mean defect size and defect concentration as a result of nanoparticle inclusion, especially with 10 wt% SiO2. Thus, the substantial drop in ion conductivity observed for this doped nanocomposite material was surprising. This decrease is most likely due to the decrease in mobility of the [NTf2] anion, possibly by its adsorption at the SiO2/grain boundary interface and concomitant decrease in mobility of the Li ion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Addition of silica nanoparticles functionalised with lithium propane sulfonate to the organic ionic plastic crystal N-ethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide ([C2mpyr][NTf2]) results in a significant increase in ionic conductivity. Analysis of these nanocomposites by impedance spectroscopy, NMR, positron annihilation lifetime spectroscopy (PALS) and Raman spectroscopy suggests that this is the result of higher matrix mobility due to an increase in defect size and concentration. The effect of these functionalised nanoparticles is compared to that previously observed for unfunctionalised nanoparticles in the lithium-doped and pure plastic crystal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of N,N-dimethylpyrrolidinium tetrafluoroborate by 1H and 11B NMR, Raman spectroscopy and powder XRD shows that this organic ionic plastic crystal material exhibits unusual phase behaviour. 1H NMR analysis indicates that the mobility of the pyrrolidinium cation decreases when the material is heated into phase I, while the X-ray diffraction pattern changes from a simple, one peak structure in phase II to a more complex pattern in phase I. The possible origins of these unusual transitions are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The corrosion behavior of magnesium single crystals with various crystallographic orientations was examined in this study. To identify the effects of surface orientation on the corrosion behavior in a systematic manner, single-crystal specimens with ten different rotation angles of the plane normal from the [0001] direction to the [1010] direction at intervals of 10° were prepared and subjected to potentiodynamic polarization and potentiostatic tests as well as electrochemical impedance spectroscopy (EIS) measurements in 3.5 wt.% NaCl solution. Potentiodynamic polarization results showed that the pitting potential (E pit) first decreased from −1.57 V SCE to −1.64 V SCE with an increase in the rotation angle from 0° to 40°, and then increased to −1.60 V SCE with a further increase in the rotation angle to 90°. The results obtained from potentiostatic tests are also in agreement with the trend in potentiodynamic polarization tests as a function of rotation angle. A similar trend was also observed for the depressed semicircle and the total resistances in the EIS measurements due to the facile formation of MgO and Mg(OH)2 passive films on the magnesium surface. In addition, the amount of chloride in the passive film was found first to increase with an increase in rotation angle from 0° to 40°, then decrease with a further increase in rotation angle, indicating that the tendency to form a more protective passive film increased for rotation angle near 0° [the (0001) plane] or 90° [the (1010) plane].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-crystal samples of the 1:1 adduct between cyanuric acid and melamine (CA·M), an outstanding case of noncovalent synthesis, have been studied by Raman spectroscopy and synchrotron X-ray diffraction in a diamond anvil cell up to pressures of 15 GPa. The abrupt changes in Raman spectra around 4.4 GPa have provided convincing evidence for pressure-induced structural phase transition. This phase transition was confirmed by angle dispersive X-ray diffraction (ADXRD) experiments to be a space group change from C2/m to its subgroup P21/m. On release of pressure, the observed transition was irreversible, and the new high-pressure phase was fully preserved at ambient conditions. We propose that this phase transition was due to supramolecular rearrangements brought about by changes in the hydrogen bonding networks.