26 resultados para algoritmi non evolutivi pattern recognition analisi dati avanzata metodi matematici intelligenza artificiale non evolutive algorithms artificial intelligence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Offline handwritten recognition is an important automated process in pattern recognition and computer vision field. This paper presents an approach of polar coordinate-based handwritten recognition system involving Support Vector Machines (SVM) classification methodology to achieve high recognition performance. We provide comparison and evaluation for zoning feature extraction methods applied in Polar system. The recognition results we proposed were trained and tested by using SVM with a set of 650 handwritten character images. All the input images are segmented (isolated) handwritten characters. Compared with Cartesian based handwritten recognition system, the recognition rate is more stable and improved up to 86.63%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a fuzzy ARTMAP (FAM) based modular architecture for multi-class pattern recognition known as modular adaptive resonance theory map (MARTMAP). The prediction of class membership is made collectively by combining outputs from multiple novelty detectors. Distance-based familiarity discrimination is introduced to improve the robustness of MARTMAP in the presence of noise. The effectiveness of the proposed architecture is analyzed and compared with ARTMAP-FD network, FAM network, and One-Against-One Support Vector Machine (OAO-SVM). Experimental results show that MARTMAP is able to retain effective familiarity discrimination in noisy environment, and yet less sensitive to class imbalance problem as compared to its counterparts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we compare two generative models including Gaussian Mixture Model (GMM) and Hidden Markov Model (HMM) with Support Vector Machine (SVM) classifier for the recognition of six human daily activity (i.e., standing, walking, running, jumping, falling, sitting-down) from a single waist-worn tri-axial accelerometer signals through 4-fold cross-validation and testing on a total of thirteen subjects, achieving an average recognition accuracy of 96.43% and 98.21% in the first experiment and 95.51% and 98.72% in the second, respectively. The results demonstrate that both HMM and GMM are not only able to learn but also capable of generalization while the former outperformed the latter in the recognition of daily activities from a single waist worn tri-axial accelerometer. In addition, these two generative models enable the assessment of human activities based on acceleration signals with varying lengths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical inspection techniques have been widely used in industry as they are non-destructive. Since defect patterns are rooted from the manufacturing processes in semiconductor industry, efficient and effective defect detection and pattern recognition algorithms are in great demand to find out closely related causes. Modifying the manufacturing processes can eliminate defects, and thus to improve the yield. Defect patterns such as rings, semicircles, scratches, and clusters are the most common defects in the semiconductor industry. Conventional methods cannot identify two scale-variant or shift-variant or rotation-variant defect patterns, which in fact belong to the same failure causes. To address these problems, a new approach is proposed in this paper to detect these defect patterns in noisy images. First, a novel scheme is developed to simulate datasets of these 4 patterns for classifiers' training and testing. Second, for real optical images, a series of image processing operations have been applied in the detection stage of our method. In the identification stage, defects are resized and then identified by the trained support vector machine. Adaptive resonance theory network 1 is also implemented for comparisons. Classification results of both simulated data and real noisy raw data show the effectiveness of our method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic face recognition (AFR) is an area with immense practical potential which includes a wide range of commercial and law enforcement applications, and it continues to be one of the most active research areas of computer vision. Even after over three decades of intense research, the state-of-the-art in AFR continues to improve, benefiting from advances in a range of different fields including image processing, pattern recognition, computer graphics and physiology. However, systems based on visible spectrum images continue to face challenges in the presence of illumination, pose and expression changes, as well as facial disguises, all of which can significantly decrease their accuracy. Amongst various approaches which have been proposed in an attempt to overcome these limitations, the use of infrared (IR) imaging has emerged as a particularly promising research direction. This paper presents a comprehensive and timely review of the literature on this subject.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new approach for defining similarity measures for Atanassov's intuitionistic fuzzy sets (AIFS), in which a similarity measure has two components indicating the similarity and hesitancy aspects. We justify that there are at least two facets of uncertainty of an AIFS, one of which is related to fuzziness while other is related to lack of knowledge or non-specificity. We propose a set of axioms and build families of similarity measures that avoid counterintuitive examples that are used to justify one similarity measure over another. We also investigate a relation to entropies of AIFS, and outline possible application of our method in decision making and image segmentation. © 2014 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic face recognition is an area with immense practical potential which includes a wide range of commercial and law enforcement applications. Hence it is unsurprising that it continues to be one of the most active research areas of computer vision. Even after over three decades of intense research, the state-of-the-art in face recognition continues to improve, benefitting from advances in a range of different research fields such as image processing, pattern recognition, computer graphics, and physiology. Systems based on visible spectrum images, the most researched face recognition modality, have reached a significant level of maturity with some practical success. However, they continue to face challenges in the presence of illumination, pose and expression changes, as well as facial disguises, all of which can significantly decrease recognition accuracy. Amongst various approaches which have been proposed in an attempt to overcome these limitations, the use of infrared (IR) imaging has emerged as a particularly promising research direction. This paper presents a comprehensive and timely review of the literature on this subject. Our key contributions are (i) a summary of the inherent properties of infrared imaging which makes this modality promising in the context of face recognition; (ii) a systematic review of the most influential approaches, with a focus on emerging common trends as well as key differences between alternative methodologies; (iii) a description of the main databases of infrared facial images available to the researcher; and lastly (iv) a discussion of the most promising avenues for future research. © 2014 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel hierarchical data fusion technique for the non-destructive testing (NDT) and condition assessment of timber utility poles. The new method analyzes stress wave data from multisensor and multiexcitation guided wave testing using a hierarchical data fusion model consisting of feature extraction, data compression, pattern recognition, and decision fusion algorithms. The researchers validate the proposed technique using guided wave tests of a sample of in situ timber poles. The actual health states of these poles are known from autopsies conducted after the testing, forming a ground-truth for supervised classification. In the proposed method, a data fusion level extracts the main features from the sampled stress wave signals using power spectrum density (PSD) estimation, wavelet packet transform (WPT), and empirical mode decomposition (EMD). These features are then compiled to a feature vector via real-number encoding and sent to the next level for further processing. Principal component analysis (PCA) is also adopted for feature compression and to minimize information redundancy and noise interference. In the feature fusion level, two classifiers based on support vector machine (SVM) are applied to sensor separated data of the two excitation types and the pole condition is identified. In the decision making fusion level, the Dempster–Shafer (D-S) evidence theory is employed to integrate the results from the individual sensors obtaining a final decision. The results of the in situ timber pole testing show that the proposed hierarchical data fusion model was able to distinguish between healthy and faulty poles, demonstrating the effectiveness of the new method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Appliance-specific Load Monitoring (LM) provides a possible solution to the problem of energy conservation which is becoming increasingly challenging, due to growing energy demands within offices and residential spaces. It is essential to perform automatic appliance recognition and monitoring for optimal resource utilization. In this paper, we study the use of non-intrusive LM methods that rely on steady-state appliance signatures for classifying most commonly used office appliances, while demonstrating their limitation in terms of accurately discerning the low-power devices due to overlapping load signatures. We propose a multi-layer decision architecture that makes use of audio features derived from device sounds and fuse it with load signatures acquired from energy meter. For the recognition of device sounds, we perform feature set selection by evaluating the combination of time-domain and FFT-based audio features on the state of the art machine learning algorithms. Further, we demonstrate that our proposed feature set which is a concatenation of device audio feature and load signature significantly improves the device recognition accuracy in comparison to the use of steady-state load signatures only.