52 resultados para Vegetative propagation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approximate numerical technique for modeling optical pulse propagation through weakly scattering biological tissue is developed by solving the photon transport equation in biological tissue that includes varying refractive index and varying scattering/absorption coefficients. The proposed technique involves first tracing the ray paths defined by the refractive index profile of the medium by solving the eikonal equation using a Runge-Kutta integration algorithm. The photon transport equation is solved only along these ray paths, minimizing the overall computational burden of the resulting algorithm. The main advantage of the current algorithm is that it enables to discretise the pulse propagation space adaptively by taking optical depth into account. Therefore, computational efficiency can be increased without compromising the accuracy of the algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient algorithm for solving the transient radiative transfer equation for laser pulse propagation in biological tissue is presented. A Laguerre expansion is used to represent the time dependency of the incident short pulse. The Runge–Kutta– Fehlberg method is used to solve the intensity. The discrete ordinates method is used to discretize with respect to azimuthal and zenith angles. This method offers the advantages of representing the intensity with a high accuracy using only a few Laguerre polynomials, and straightforward extension to inhomogeneous media. Also, this formulation can be easily extended for solving the 2-D and 3-D transient radiative transfer equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Each year, large amounts of money and labor are spent on patching the vulnerabilities in operating systems and various popular software to prevent exploitation by worms. Modeling the propagation process can help us to devise effective strategies against those worms' spreading. This paper presents a microcosmic analysis of worm propagation procedures. Our proposed model is different from traditional methods and examines deep inside the propagation procedure among nodes in the network by concentrating on the propagation probability and time delay described by a complex matrix. Moreover, since the analysis gives a microcosmic insight into a worm's propagation, the proposed model can avoid errors that are usually concealed in the traditional macroscopic analytical models. The objectives of this paper are to address three practical aspects of preventing worm propagation: (i) where do we patch? (ii) how many nodes do we need to patch? (iii) when do we patch? We implement a series of experiments to evaluate the effects of each major component in our microcosmic model. Based on the results drawn from the experiments, for high-risk vulnerabilities, it is critical that networks reduce the number of vulnerable nodes to below 80%. We believe our microcosmic model can benefit the security industry by allowing them to save significant money in the deployment of their security patching schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are the two common means for propagating worms: scanning vulnerable computers in the network and sending out malicious email attachments. Modeling the propagation of worms can help us understand how worms spread and devise effective defence strategies. Most traditional models simulate the overall scale of infected network in each time tick, making them invalid for examining deep inside the propagation procedure among individual nodes. For this reason, this paper proposes a novel probability matrix to model the propagation mechanism of the two main classes of worms (scanning and email worms) by concentrating on the propagation probability. The objective of this paper is to access the spreading and work out an effective scheme against the worms. In order to evaluate the effects of each major component in our probability model, we implement a series of experiments for both worms. From the results, the network administrators can make decision on how to reduce the number of vulnerable nodes to a certain threshold for scanning worms, and how to immunize the highly-connected node for preventing worm's propagation for email worms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active Peer-to-Peer worms are great threat to the network security since they can propagate in automated ways and flood the Internet within a very short duration. Modeling a propagation process can help us to devise effective strategies against a worm's spread. This paper presents a study on modeling a worm's propagation probability in a P2P overlay network and proposes an optimized patch strategy for defenders. Firstly, we present a probability matrix model to construct the propagation of P2P worms. Our model involves three indispensible aspects for propagation: infected state, vulnerability distribution and patch strategy. Based on a fully connected graph, our comprehensive model is highly suited for real world cases like Code Red II. Finally, by inspecting the propagation procedure, we propose four basic tactics for defense of P2P botnets. The rationale is exposed by our simulated experiments and the results show these tactics are of effective and have considerable worth in being applied in real-world networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A common view for the preferable positions of thwarting worm propagation is at the highly connected nodes. However, in certain conditions, such as when some popular users (highly connected nodes in the network) have more vigilance on the malicious codes, this may not always be the truth. In this letter, we propose a measure of betweenness and closeness to locate the most suitable positions for slowing down the worm propagation. This work provides practical values to the defense of topological worms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Worms are widely believed to be one of the most serious challenges in network security research. In order to prevent worms from propagating, we present a microcosmic model, which can benefit the security industry by allowing them to save significant money in the deployment of their security patching schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Online social networks have not only become a point of aggregation and exchange of information, they have so radically rooted into our everyday behaviors that they have become the target of important network attacks. We have seen an increasing trend in Sybil based activity, such as in personification, fake profiling and attempts to maliciously subvert the community stability in order to illegally create benefits for some individuals, such as online voting, and also from more classic informatics assaults using specifically mutated worms. Not only these attacks, in the latest months, we have seen an increase in spam activities on social networks such as Facebook and RenRen, and most importantly, the first attempts at propagating worms within these communities. What differentiates these attacks from normal network attacks, is that compared to anonymous and stealthy activities, or by commonly untrusted emails, social networks regain the ability to propagate within consentient users, who willingly accept to partake. In this paper, we will demonstrate the effects of influential nodes against non-influential nodes through in simulated scenarios and provide an overview and analysis of the outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Email worms propagate across networks by taking advantage of email relationships. Modeling the propagation of email worms can help predict their potential damages and develop countermeasures. We propose a novel analytical model on the propagation process of modern reinfection email worms. It relies on probabilistic analysis, and thus can provide a steady and reliable assessment on the propagation dynamics. Additionally, by introducing virtual users to represent the repetitious spreading process, the proposed model overcomes the computational challenge caused by reinfection processes. To demonstrate the benefits of our model, we conduct a series of experimental evaluation. The results show that our novel approach achieves a greater accuracy and is more suitable for modeling modern email worms than previous models.