27 resultados para Tonometry, Ocular


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantification of ocular exposure to ultraviolet-B radiation (UV-B) has become an important public health issue, with reports that the ozone layer is being depleted worldwide. Ocular exposure to UV-B is determined by ambient UV-B levels, the duration of outdoor exposure, the proportion of ambient UV-B that reaches the eye, and the use of ocular protection. We have developed a simplified model for quantifying lifetime ocular UV-B exposure that can be used in large epidemiological surveys. Exposure to UV-B is assessed and quantified using a model based on personal exposure over the six summer months. Data available for a population-based sample of 1150 people in the age range 40-98 years revealed a distribution in average annual lifetime ocular UV-B exposure similar to that reported in a previous study on which this model is based, and also demonstrate that people can recall lifetime personal behaviour related to ocular protection. It takes 12 minutes on average to collect these data. This model can be employed by researchers worldwide for uniform assessment of ocular UV-B exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM: To fabricate ultra-small algal chitosan nanoparticles (US CS NPs) for efficient delivery of bovine lactoferrin (bLf) to ocular tissues through topical administration to prevent carbendazim-induced toxicity. MATERIALS & METHODS: Rat eye model was used to evaluate the in vivo biodistribution the US CS NPs and bovine eye model was used for evaluating ex vivo biodistribution. Human lens epithelial cell line (HLEB-3) model was used to evaluate the in vitro toxicity, uptake mechanism and in vitro efficacy of the synthesized bLf-US CS NPs over carbendazim-induced ocular toxicity. RESULTS: The in vivo and ex vivo biodistribution results suggest that the ultra-small CS NPs efficiently internalize into the ocular tissues within 1 h after administering topically. Ultra-small algal nanocarriers to encapsulate bioactive antioxidant bLf protein and evaluated its potential in inhibiting carbendazim-induced human lens cell apoptosis and oxidative stress. CONCLUSION: US CS NPs could be explored for their potential for delivering various ocular drugs through topical administration for other eye diseases including cataract, glaucoma and age-related macular degeneration.