63 resultados para Time delays


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents some results on the global exponential stabilization for neural networks with various activation functions and time-varying continuously distributed delays. Based on augmented time-varying Lyapunov-Krasovskii functionals, new delay-dependent conditions for the global exponential stabilization are obtained in terms of linear matrix inequalities. A numerical example is given to illustrate the feasibility of our results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper deals with the H∞ control problem of neural networks with time-varying delays. The system under consideration is subject to time-varying delays and various activation functions. Based on constructing some suitable Lyapunov-Krasovskii functionals, we establish new sufficient conditions for H∞ control for two cases of time-varying delays: (1) the delays are differentiable and have an upper bound of the delay-derivatives and (2) the delays are bounded but not necessary to be differentiable. The derived conditions are formulated in terms of linear matrix inequalities, which allow simultaneous computation of two bounds that characterize the exponential stability rate of the solution. Numerical examples are given to illustrate the effectiveness of our results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper concerns with the problem of state-feedback H∞ control design for a class of linear systems with polytopic uncertainties and mixed time-varying delays in state and input. Our approach can be described as follows. We first construct a state-feedback controller based on the idea of parameter-dependent controller design. By constructing a new parameter-dependent Lyapunov-Krasovskii functional (LKF), we then derive new delay-dependent conditions in terms of linear matrix inequalities ensuring the exponential stability of the corresponding closed-loop system with a H∞ disturbance attenuation level. The effectiveness and applicability of the obtained results are demonstrated by practical examples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract
This study examines the problem of synchronization for singular complex dynamical networks with Markovian jumping parameters and two additive time-varying delay components. The complex networks consist of m modes which switch from one mode to another according to a Markovian chain with known transition probability. Pinning control strategies are designed to make the singular complex networks synchronized. Based on the appropriate Lyapunov-Krasovskii functional, introducing some free weighting matrices and using convexity of matrix functions, a novel synchronization criterion is derived. The proposed sufficient conditions are established in the form of linear matrix inequalities. Finally, a numerical example is presented to illustrate the effectiveness of the obtained results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract
In this article, an exponential stability analysis of Markovian jumping stochastic bidirectional associative memory (BAM) neural networks with mode-dependent probabilistic time-varying delays and impulsive control is investigated. By establishment of a stochastic variable with Bernoulli distribution, the information of probabilistic time-varying delay is considered and transformed into one with deterministic time-varying delay and stochastic parameters. By fully taking the inherent characteristic of such kind of stochastic BAM neural networks into account, a novel Lyapunov-Krasovskii functional is constructed with as many as possible positive definite matrices which depends on the system mode and a triple-integral term is introduced for deriving the delay-dependent stability conditions. Furthermore, mode-dependent mean square exponential stability criteria are derived by constructing a new Lyapunov-Krasovskii functional with modes in the integral terms and using some stochastic analysis techniques. The criteria are formulated in terms of a set of linear matrix inequalities, which can be checked efficiently by use of some standard numerical packages. Finally, numerical examples and its simulations are given to demonstrate the usefulness and effectiveness of the proposed results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study is concerned with the delay-range-dependent stability analysis for neural networks with time-varying delay and Markovian jumping parameters. The time-varying delay is assumed to lie in an interval of lower and upper bounds. The Markovian jumping parameters are introduced in delayed neural networks, which are modeled in a continuous-time along with finite-state Markov chain. Moreover, the sufficient condition is derived in terms of linear matrix inequalities based on appropriate Lyapunov-Krasovskii functionals and stochastic stability theory, which guarantees the globally asymptotic stable condition in the mean square. Finally, a numerical example is provided to validate the effectiveness of the proposed conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes a new design method of H∞ filtering for nonlinear large-scale systems with interconnected time-varying delays. The interaction terms with interval time-varying delays are bounded by nonlinear bounding functions including all states of the subsystems. A stable linear filter is designed to ensure that the filtering error system is exponentially stable with a prescribed convergence rate. By constructing a set of improved Lyapunov functions and using generalized Jensen inequality, new delay-dependent conditions for designing H∞ filter are obtained in terms of linear matrix inequalities. Finally, an example is provided to illustrate the effectiveness of the proposed result.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, the model of memristor-based complex-valued neural networks (MCVNNs) with time-varying delays is established and the problem of passivity analysis for MCVNNs is considered and extensively investigated. The analysis in this paper employs results from the theory of differential equations with discontinuous right-hand side as introduced by Filippov. By employing the appropriate Lyapunov–Krasovskii functional, differential inclusion theory and linear matrix inequality (LMI) approach, some new sufficient conditions for the passivity of the given MCVNNs are obtained in terms of both complex-valued and real-value LMIs, which can be easily solved by using standard numerical algorithms. Numerical examples are provided to illustrate the effectiveness of our theoretical results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, the authors address a new problem of finding, with a pre-specified time, bounds of partial states of non-linear discrete systems with a time-varying delay. A novel computational method for deriving the smallest bounds is presented. The method is based on a new comparison principle, a new algorithm for finding the infimum of a fractal function, and linear programming. The effectiveness of our obtained results is illustrated through a numerical example.