67 resultados para TiO2 anatase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A composite from a broad bandgap polymer, poly(phenylene ethylene) (PPE), and nano-sized TiO2 particles was found to be able to sense 2,4,6-trinitrotoluene (TNT) for TNT sensor. Fluorescence quenching induced by charge transfer from PPE to nano-sized TiO2 was observed in toluene solution. At high TiO2 composition, a strong exciplex band occurred at 550 nm. Under prolonged light irradiation at 400 nm, unusual fluorescence gains took place at 460 nm, companied with a very small change in the UV–vis absorbance. After 30 min light irradiation, the fluorescence at 460 nm reached a maximum, but the peak at 550 nm disappeared. This composite showed amplified sensor response to TNT compared to the pristine PPE film, which can be potentially used as sensing material for detecting TNT based explosives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have shown that composite polymer electrolytes, formed by dispersing nanosized ceramic particles in polyether-based electrolytes, have improved ion transport properties as compared to their unfilled analogues. In the present study polymer electrolytes with different loadings of nano-sized ceramic particles (TiO2) and different polymer chemistry and morphology have been investigated. Of special interest are filler induced effects on polymer, solvent and cationic mobility. Partly crystalline polymer electrolytes based on poly(ethylene oxide) have been compared to fully amorphous polymer electrolytes based on a polyether urethane, as well as gel electrolytes based on PMMA. 7Li pfg-NMR, linewidth and spin–spin relaxation times as well as 1H pfg-NMR and spin–spin relaxation times, were measured as a function of temperature and composition. The 1H spin–spin relaxation measurements reveal increased average polymer mobility with the addition of filler up to a maximum at 4 and 8 wt.% TiO2 for the fully amorphous and the partly crystalline electrolytes, respectively. The 7Li linewidth measurements for the fully amorphous system show a broadening of the linewidth with addition of filler. Based on variable temperature measurements this broadening is interpreted as a result of the inhomogeneity introduced by the filler particles. Pulsed field gradient (pfg) diffusion measurements were employed to determine ion and solvent self-diffusion coefficients. In the case of the PMMA-based gel electrolyte and the fully amorphous electrolytes enhanced cation self-diffusion was observed upon addition of TiO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solvent and ion dynamics in PMMA based gels have been investigated as a function of the loading of nanosized TiO2 particles. The gels have a molar ratio of 46.5:19:4.5:30 of ethylene carbonate (EC), propylene carbonate (PC), lithium perchlorate and PMMA, respectively. A series of samples with 0, 4, 6 and 8 wt.% TiO2 filler were investigated. The diffusion coefficients for the lithium ions and for the two solvents (EC and PC) were investigated by pfg-NMR. It was shown that the addition of filler to the gel electrolytes enhances the diffusion of the cations, while the diffusion of the solvents remains constant. Raman measurements show no significant changes in ion–ion interactions with the addition of fillers, while the ionic conductivity is seen to decrease. However, the sample with 8 wt.% TiO2 had a conductivity close to that of the unfilled sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of nano-sized ceramic particles to the plastic crystal ethyl-methyl pyrrolidinium bis(trifluoromethane sulfonyl)amide (P12TFSA) has been investigated by means of DSC and conductivity. The thermal behaviour of the plastic crystal as a function of filler content suggests that the filler particles decrease the onset temperature of the melting slightly at high loadings, however they do not decrease the crystallinity of the material. Furthermore, the IV → III transition decreases in intensity, indicating that the addition of filler increases the possibility for the crystal to remain in metastable rotator phases also at lower temperatures. The conductivity shows a more than one order of magnitude increase with the addition of filler, with a filler concentration dependence that levels out above ~ 10 wt.% TiO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano-particle oxide fillers including TiO2, SiO2 and Al2O3 have previously been shown to have a significant affect on the properties of polymer electrolytes, especially those based on polyether–lithium salt systems. In some cases, conductivity increases of more than one order of magnitude have been reported in crystalline PEO-based complexes. In this work, we report on the effects of TiO2 on a completely amorphous polyether-based system to remove the complication of multiple phases presented by the semi-crystalline nature of PEO. Multinuclear magnetic resonance spectroscopy has shown that the lithium ion environment is changed by the addition of filler. Vibrational spectroscopy shows that the filler influences the disordered-longitudinal acoustic modes (DLAM) in the case of an amorphous polyether and suggests an interaction between the filler surface and the polymer. Positron annihilation lifetime spectroscopy indicates an increase in free volume upon addition of filler to an amorphous polyether–salt complex, coinciding with an apparent increase in polymer mobility as determined from 1H T2 NMR measurements. Impedance spectroscopy has shown clear evidence of an inter-phase region that may be more or less conductive than the bulk polymer electrolyte itself. The data support a model which includes conduction through an interfacial region in addition to the bulk polymer

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method was investigated to produce new multiscale fibrous nanocomposites comprised of titanium oxide (TiO2) nanofibers and silver (Ag) nanoparticles (NPs). The process involved electrospinning TiO2 precursor solution containing colloidal solution of Ag NPs, and organic solvent (dimethyl-n′n-formamide) to fabricate a porous, nonwoven, free-standing nanofiber mesh. Postprocess heating of the electrospun nanofibers entailed calcination in air environment at 500°C for 3 h. Microemulsion processing was used to generate NPs of Ag in a monodispersed distribution throughout the colloidal solution. X-ray diffraction data were consistent with the anatase phase of TiO2, while transmission electron microscopy and hydrogen desorption measurements revealed a very porous microstructure. It was demonstrated that NP colloidal stability is solvent dependent. It is anticipated that incorporation of metal particles in nanofibers will lead to enhanced photocurrent generation, when used in functional devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth mechanisms of TiO2 nanorods synthesized from mineral ilmenite using ball milling and annealing method have been systematically investigated. Two annealing processes are needed to grow the nanorods. The heating rate and gaseous environment in the first annealing step are critical to the formation of intermediate phases; these and the annealing atmosphere in the second heating play very important roles in nanorod growth. One-dimensional growth of the nanorods induced by low-temperature annealing in nitrogen plus hydrogen is possibly driven by atom vacancy diffusion in addition to surface diffusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In present study, the formation of bioactive anatase on bulk titanium (Ti) by hybrid surface mechanical attrition treatment (SMAT) is reported. A commercial pure Ti plate first underwent SMAT in a vacuum for 1 h to produce a nanocrystalline layer with a thickness of about 30 µm, and then the nanocrystalline Ti (30 nm) was transformed into mesoporous anatase with a grain size 10 nm by chemical oxidation and calcination. The mesoporous anatase showed excellent bioactivity while being soaked in simulated body fluid, which could be attributed to the unique nanostructure on the SMAT Ti surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid TiO2/microcrystalline cellulose (MC) nanophotocatalyst was prepared in situ by a facile and simple synthesis utilizing benign precursors such as MC and TiCl4. The as-prepared nanocomposite was characterized by XRD, XPS, BET surface area analyzer, UV–vis DRS and TGA. Surface morphology was assessed by the means of SEM and HR-TEM. Statistics-based factorial design (FD) was adopted to investigate the effect of precursors concentrations and therefore to optimize the nanocomposite synthesis through catalytic adsorption of methylene blue (MB) from aqueous solutions. The results indicated that TiO2/MC nanocomposites were photocatalytically active in diminishing 40–90% of MB in 4 h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present article describes a new titanium oxide‐based (TiO2) photocatalyst that shows promise for acceleration of dye degradation. A hierarchical TiO2 nanostructure comprising nanorods on‐nanofibres has been prepared using a sol–gel route and electrospinning. Calcination of electrospun nanobre mats was performed in air at 500 °C. The TiO2 nanofibre surface was then exploited as a ‘seeding ground’ to grow TiO2 nanorods by a solvothermal process in NaOH. The nanofibres had a diameter of approximately 100 nm while the nanorods were evenly distributed on the nanofibre surface with a mean diameter of around 50–80 nm. The hierarchical nanostructure showed enhanced photocatalytic activity when compared to pure TiO2 nanofibres. This improved efficiency in degrading methylene blue through the photocatalytic process was attributed to the larger specific surface area of the TiO2 nanostructures, as well as high surface‐to‐volume ratio and higher reactive surface resulting in enhanced surface adsorption and interfacial redox reaction.