63 resultados para TUBES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metallic tubes have been extensively studied for their crashworthiness as they closely resemble automotive crash rails. Recently, the demand to produce light weight yet safer vehicles has led to the need to understand the behaviour of novel materials such as composites, metallic foams and sandwich structures durign a crash. This paper presents a method to predict the crashworthiness of structural components using material modes. The material factors that most affect the crushing response are determined and quantified by developing and validating the crushing of a square tube model in Abaqus. The inputs from the model are used to construct a simple, physically realistic constitutive model and new test methods for predicting the material behaviour at high strain rates using low test speeds. These material models enable a designer to predict the crash behaviour of a structure without the need to perform extensive physical tests, thus reducing the time and cost of development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quasi-static and intermediate rate axial crush tests were conducted on tubular specimens of Carbon/Epoxy (Toray T700/G83C) and Glass/Polypropylene (Twintex). The quasi-static tests were conducted at 10 mm/min (1.67 x 10¯4 m/s); five different crush initiators were used. Tests at intermediate rates were performed at speeds of 0.25, 0.5, 0.75, 1, 2, and 4m/s. Modes of failure and specific energy absorption (SEA) values were studied. The highest SEA measured was 86 kJ/kg. This value was observed using Carbon/Epoxy samples at quasi static rates with a 45° chamfer initiator. The highest energy absorption for Twintex tubes was observed to be 57.56 kJ/kg during 45° chamfer initiated tests at 0.25 m/s. Compared with steel and aluminium, SEA values of 15 and 30 kJ/kg, respectively, the benefits of using composite materials in crash structures become apparent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This present work examines the load carrying capacity, energy absorption and fracture characteristics of wrought magnesium and aluminium alloy tubes in three-point bending. Magnesium alloy AZ31, and aluminium alloys 6063 and 7075, were extruded into cylindrical tubes of both equivalent thickness and mass. A strong thickness effect was present meaning that the AZ31 tube had significantly higher load and energy absorption performance than an equivalent mass 6063 tube, albeit not as high as the 7075 tube. Hinge formation and maximum load was delayed for the magnesium alloy, meaning that a high energy absorption rate persisted to higher deformation displacements than the aluminium alloys. It was also found that fracture during deformation was dependent on the indenter diameter, tube thickness and lower support separation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of extruded AZ31, AZ61 and AM-EX1 tubes was examined in three-point bending. Different extrusion temperatures were used to investigate the effect of grain size on the load-carrying capacity, energy absorption and fracture propensity of the tubes. Results showed that while the peak load increased with a smaller average recrystallised grain size, the retention of large elongated un-recrystallised grains in the microstructure reduced the load. The presence of the large elongated grains also appeared detrimental to the ability of the tube to deform before fracture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metallic tubes have been extensively studied for their crashworthiness as they closely resemble automotive crash rails. Recently, the demand to improve fuel economy and reduce vehicle emissions has led automobile manufacturers to explore the crash properties of light weight materials such as fibre reinforced polymer composites, metallic foams and sandwich structures in order to use them as crash barriers. This paper discusses the response of carbon fibre reinforced polymer (CFRP) tubes and their failure mechanisms during side impact. The energy absorption of CFRP tubes is compared to similar Aluminium tubes. The response of the CFRP tubes during impact was modelled using Abaqus finite element software with a composite fabric material model. The material inputs were given based on standard tension and compression test results and the in-plane damage was defined based on cyclic shear tests. The failure modes and energy absorption observed during the tests were well represented by the finite element model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metallic tubes have been extensively studied for their crashworthiness as they closely resemble automotive crash rails. Recently, the demand to produce lighter weight, yet safer vehicles has led to the need to understand the crash behaviour of novel materials, such as fibre reinforced polymer composites, metallic foams and sandwich structures. This paper discusses the static indentation response of Carbon Fibre Reinforced Polymer (CFRP) tubes. The side impact on a CFRP tube involves various failure mechanisms. This paper highlights these mechanisms and compares the energy absorption of CFRP tubes with similar Aluminium tubes. The response of the CFRP tubes during bending was modelled using ABAQUS finite element software with a composite fabric material model. The material inputs were given based on standard tension and compression test results and the in-plane damage was defined based on cyclic shear tests. The failure modes and energy absorption observed during the tests were well represented by the finite element model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sperm cells of pollen tubes grown both in vivo and in vitro form a male germ unit. Extensions from both sperm cells of each pollen tube are closely associated with the tube nucleus. A high yield (2.7 × 104. 20 mg−1 pollen grains germinated) of intact sperm cells was obtained following release by osmotic shock from pollen tubes grown in vitro. Structural integrity of isolated sperm was maintained by isolation at low temperature in an osmotically balanced medium. At 4° C many isolated sperm pairs were still enclosed within the pollentube inner plasma membrane. Sperm cells not enclosed within this membrane no longer remained connected as a pair. During isolation vesicles formed on the sperm cell surface from disruption of the fibrillar components bridging the periplasmic space. Both in the pollen tube and after isolation the sperm nucleus is in close association with at least one region of the sperm plasma membrane. Sperm isolated at room temperature showed the presence of nucleopores, and nuclei were euchromatic, instead of heterochromatic as in intact sperm in the pollen tube.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When Rhododendron pollen tubes are cultured in the dark, electron-dense bodies are present that appear to be a metabolically altered form of a proplastid that is difficult to fix for electron microscopy, and whose membranes may not be intact. When similar pollen tubes are cultured in a dark/light regime, ultrastructurally well-defined proplastids are present after fixation in glutaraldehyde with PIPES buffer and tannic acid, followed by osmic acid. This fixation technique also gave the best ultrastructural images of those proplastids in pollen tubes grown in the dark. Pollen tube plastids have the potential to become chromoplasts when cultured in a dark/light regime as evidenced by the presence of branched tubules characteristic of these organelles. Light appears to be a hitherto neglected environmental factor involved in regulating pollen tube growth. This improved fixation procedure demonstrates the bilayered nature of the membranes surrounding sperm cells and the existence of cytoplasmic channels connecting sperm cell and pollen tube plasma membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: This article is a report of a study examining the practices of acute care nurses when administering medication via enteral tubes. Background. Administering medication via enteral tubes is predominantly a nursing responsibility across countries. It is important to establish what nurses actually do when giving enteral medication to inform policy and continuing education development.

Method:
In 2007, a survey was conducted using a random sample of acute care nurses at two large metropolitan hospitals in Melbourne, Australia. There were 181 Registered Nurses who participated in the study; 92 (50Æ8%) practised in intensive care units, 52 (28Æ7%) in surgical areas, 30 (16Æ6%) in medical areas and 7 (3Æ9%) were from combined medical–surgical areas. The questionnaire was developed by the researchers and a pilot study was conducted in August 2006 to test reliability, face validity and user-friendliness of the tool.

Results: Nurses reported using a range of methods to verify enteral tube position prior to administering enteral medication; some were unreliable methods. A majority reported administering enteric-coated and slow or extended release forms of medication, and giving solid forms of medication when liquid form was available. Nearly all (96%) reported flushing a tube after giving medication, 28% before, and 12% always flushed between each medication.

Conclusion: Enteral medication administration practices are inconsistent. Some nurses are using unsafe practices and may therefore compromise patient care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of foam fillers on the impact behaviour and energy absorption of an aluminium tube is investigated. Both experimental test and computational simulation are employed in current study. For comparison, hollow tubes and foams are also tested, respectively. Foam filler is found to be ineffective in increasing the crushing loads of the composite tubes over the simple superposition of the crushing loads of hollow tube and foam. Also, foam filler increases the tendency for the concertina mode of folding. The foam fillers of tubes additionally result in increasing the SAE values over those of hollow tubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the study, the strengthening effect of aluminium foam in thin-walled aluminium tubes subject to bending load in investigated experimentally and numerically. Bending tests are conducted on foam filler, hollow tube and foam-filled tube. The finite element method is used as well to get deeper insight into the crush failure modes via focusing on the influence from wall thickness of the tube. The obtained information is useful to optimally design foam-filled tubes as energy absorbing devices in automotive engineering. The optimisation results can be implemented to find an optimum foam-filled tube that absorbs the same energy as the optimal hollow tube but with much less weight. © (2014) Trans Tech Publications, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin-Walled honeycombs have been extensively investigated and they are often used as sandwich panels to enhance the energy absorption in many applications including vehicles. In this study, axial compressive tests at three different velocities (3, 30 and 300 mm/min, respectively) by using an MTS machine were conducted with both empty and hybrid aluminium tubes filled with aluminium honeycomb. The aim of this work is to study the contribution of aluminium honeycomb in square hybrid tubes in terms of the deformation mode and energy absorption. Square aluminium tubes made of AA 6060-T5 with two different side lengths, 40 and 50 mm, were used. Two types of honeycombs made of AA 5052 with different cell wall thicknesses were used in this study. The force and displacement of the tubes were recorded during the test. The specific energy absorption (SEA) of honeycomb-Filled tubes was compared with the sum of the SEA of an empty tube and honeycomb. It was noticed that the SEA of the hybrid tubes depended on the honeycomb density and the loading velocity within the velocity range studied. © (2015) Trans Tech Publications, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomembrane transformations are closely related to many biological processes including endo/exocytosis and the cellular response to the local physical environment. In this work, we investigated the transformation between lipid membranes and lipid vesicles/tubes modulated by the solid substrate of graphene oxide (GO) aggregates under laser irradiation. We firstly fabricate a novel type of lipid@GO composite consisting of micrometer-sized GO aggregates surrounded by lamellar lipid membranes. Upon laser irradiation, lipid protrusion occurs and leads to the formation of vesicles adsorbed on the GO aggregate surface, with an average size as 0.43 times of the radius of GO aggregate. Both the location and the dynamic formation process of vesicles can be modulated. The arising of vesicles prefers to occur at edges of the GO planes rather than on surface of individual GO sheets within the GO aggregate. Furthermore, at a reduced laser power density, the lipid protrusion mainly grows to tubes instead of vesicles. Such transformations from lipid membrane to vesicles and tubes is ascribed to the reduction of GO to reduced-GO (rGO) under laser irradiation, probably along with the release of gases leading to the deformation of lipid membrane surrounding the GO surface.