81 resultados para Synthase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mammals, nitric oxide (NO) produced by nitric oxide synthase 3 (NOS3) localised in vascular endothelial cells is an important vasodilator but the presence of NOS3 in the endothelium of amphibians has been concluded to be absent, based on physiological studies. In this study, a nos3 cDNA was sequenced from the toad, Rhinella marina. The open reading frame of R. marina nos3 encoded an 1170 amino acid protein that showed 81 % sequence identity to the recently cloned Xenopus tropicalis nos3. Rhinella marina nos3 mRNA was expressed in a range of tissues and in the dorsal aorta and pulmonary, mesenteric, iliac and gastrocnemius arteries. Furthermore, nos3 mRNA was expressed in the aorta of Xenopus laevis and X. tropicalis. Quantitative real-time PCR showed that removal of the endothelium of the lateral aorta of R. marina significantly reduced the expression of nos3 mRNA compared to control aorta with the endothelium intact. However, in situ hybridisation was not able to detect any nos3 mRNA in the dorsal aorta of R. marina. Immunohistochemistry using a homologous R. marina NOS3 antibody showed immunoreactivity (IR) within the basal region of many endothelial cells of the dorsal aorta and iliac artery. NOS3-IR was also observed in the proximal tubules and collecting ducts of the kidney but not within the capillaries of the glomeruli. This is the first study to demonstrate that vascular endothelial cells of an amphibian express NOS3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide (NO) signalling pathways were examined in the lateral aortae and dorsal aorta of the cane toad Bufo marinus. NADPH diaphorase histochemistry and nitric oxide synthase (NOS) immunohistochemistry found no evidence for endothelial NOS in the endothelium of toad aortae, but it could be readily demonstrated in rat aorta that was used as a control. Immunohistochemistry using a specific neural NOS antibody showed the presence of neural NOS immunoreactivity in the perivascular nerves of the aortae. The anatomical data was supported by in vitro organ bath physiology, which demonstrated that the vasodilation mediated by applied acetylcholine (10-5 mol l-1) was not dependent on the presence of the vascular endothelium; however, it was significantly reduced in the presence of a neural NOS inhibitor, vinyl-L-NIO (10-4 mol l-1). In addition, atropine (10-6 mol l-1) (a muscarinic receptor inhibitor), L-NNA (10-4 mol l-1) (a NOS inhibitor) and ODQ (10-5 mol l-1) (an inhibitor of soluble guanylyl cyclase) abolished the vasodilatory effect of applied acetylcholine. In conclusion, we propose that an endothelial NO system is absent in toad aortae and that NO generated by neural NOS in perivascular nerves mediates vasodilation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Six untrained, male subjects (23 ± 1 years old, 84 ± 5 kg, VO2peak= 3.7 ± 0.8 l min–1) exercised for 60 min at 75 ± 1%VO2peak on 7 consecutive days.  Muscle samples were obtained before the start of cycle exercise training and 24 h after the first and seventh exercise sessions and analysed for citrate synthase activity, glycogen and glucose transporter 4 (GLUT-4) mRNA and protein expression. Exercise training increased (P < 0.05) citrate synthase by ~20% and muscle glycogen concentration by ~40%. GLUT-4 mRNA levels 24 h after the first and seventh exercise sessions were similar to those  measured before the start of exercise training. In contrast, GLUT-4 protein expression was increased after 7 days of exercise training (12.4 ± 1.5 versus 3.4 ± 1.0 arbitray units (a.u.), P < 0.05) and although it tended to be higher 24 h after the first exercise session (6.0 ± 3.0 versus 3.4 ± 1.0 a.u.), this was not significantly different (P= 0.09). These results support the suggestion that the adaptive increase in skeletal muscle GLUT-4 protein expression with short-term exercise training arises from the repeated, transient increases in GLUT-gene transcription following each exercise bout leading to a gradual accumulation of GLUT-4 protein, despite GLUT-4 mRNA returning to basal levels between exercise stimuli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the mechanisms by which nitric oxide (NO) regulates the dorsal aorta and the intestinal vein of the Australian short-finned eel Anguilla australis. NADPH diaphorase histochemistry and immunohistochemistry using a mammalian endothelial nitric oxide synthase (NOS) antibody could not demonstrate NOS in the endothelium of either blood vessel; however, NOS could be readily demonstrated in the endothelium of the rat aorta that was used as a control. Both blood vessels contained NADPH diaphorase positive nerve fibres and nerve bundles, and immunohistochemistry using a neural NOS antibody showed a similar distribution of neural NOS immunoreactivity in the perivascular nerves. In vitro organ bath physiology showed that a NO/soluble guanylyl cyclase (GC) system is present in the dorsal aorta and the intestinal vein, since the soluble GC inhibitor oxadiazole quinoxalin-1 (ODQ; 10–5 mol l–1) completely abolished the vasodilatory effect of the NO donor, sodium nitroprusside (SNP; 10–4 mol l–1). In addition, nicotine (3x10–4 mol l–1) mediated a vasodilation that was not affected by removal of the endothelium. The nicotine-mediated dilation was blocked by the NOS inhibitor, Nω-nitro-arginine (L-NNA; 10–4 mol l–1), and ODQ (10–5 mol l–1). More specifically, the neural NOS inhibitor, Nω-propyl-L-arginine (10–5 mol l–1), significantly decreased the dilation induced by nicotine (3x10–4 mol l–1). Furthermore, indomethacin (10–5 mol l–1) did not affect the nicotine-mediated dilation, suggesting that prostaglandins are not involved in the response. Finally, the calcium ionophore A23187 (3x10–6 mol l–1) caused an endothelium-dependent dilation that was abolished in the presence of indomethacin. We propose the absence of an endothelial NO system in eel vasculature and suggest that neurally derived NO contributes to the maintenance of vascular tone in this species. In addition, we suggest that prostaglandins may act as endothelially derived relaxing factors in A. australis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined the nitric oxide (NO) control of the vascular smooth muscle of the ventral abdominal vein and vena cava of the toad, Bufo marinus, by using anatomical and physiological approaches. Nicotinamide adenine di-nucleotide phosphate-diaphorase histochemistry and immunohistochemistry using endothelial nitric oxide synthase (NOS) and neural NOS antibodies produced no evidence for endothelial NOS in the veins, but, neural NOS-immunoreactive perivascular nerves were present. Acetylcholine (10–5 M) caused a vasodilation in both veins that was endothelium-independent, and which was blocked by the soluble guanylyl cyclase inhibitor, ODQ (10–5 M). The NOS inhibitors, L-NNA (10–4 M) and L-NAME (10–4 M), did not significantly reduce the vasodilatory effect of acetylcholine in the veins; this suggested that the vasodilation was not due to NO. However, in the presence of phenoxybenzamine (10–7–10–8 M), L-NNA significantly reduced the vasodilatory effect of acetylcholine in the veins. This unusual response is due to phenoxybenzamine partially inactivating the muscarinic receptor pool in the veins. In addition, the neural NOS inhibitor, vinyl-L-NIO (10–5 M), significantly reduced the acetylcholine-mediated vasodilation in the presence of phenoxybenzamine. The results show that in toad veins, nitrergic nerves rather than an endothelial NO system are involved in NO-mediated vasodilation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In mammals, much is understood about the endothelial and neural NO control mechanisms in the vasculature. In contrast, NO control of blood vessels in lower vertebrates is poorly understood, with the majority of research focusing on the presence of an endothelial NO system; however, its presence remains controversial. This study examined the mechanisms by which NO regulates the large blood vessels of non-mammalian vertebrates. In all species examined, the arteries and veins contained a plexus of NOS-positive perivascular nerves that included nerve bundles and fine, varicose nerve terminals. However, in the large arteries and veins of various species of fishes and amphibians, no anatomical evidence was found for endothelial NOS using both NADPH-diaphorase and eNOS immunohistochemistry. In contrast, perinuclear NOS staining was readily apparent in blue-tongue lizard, pigeon and rat, which suggested that eNOS first appeared in reptiles. Physiological analysis of NO signalling in the vascular smooth muscle of short-finned eel and cane toad could not find any evidence for endothelial NO signalling. In contrast, it appears that activation of the nitrergic vasomotor nerves is responsible for NO control of the blood vessels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The subcellular localization of insulin signaling proteins is altered by various stimuli such as insulin, insulin-like growth factor I, and oxidative stress and is thought to be an important mechanism that can influence intracellular signal transduction and cellular function. This study examined the possibility that exercise may also alter the subcellular localization of insulin signaling proteins in human skeletal muscle. Nine untrained males performed 60 min of cycling exercise (~67% peak pulmonary O2 uptake). Muscle biopsies were sampled at rest, immediately after exercise, and 3 h postexercise. Muscle was fractionated by centrifugation into the following crude fractions: cytosolic, nuclear, and a high-speed pellet containing membrane and cytoskeletal components. Fractions were analyzed for protein content of insulin receptor, insulin receptor substrate (IRS)-1 and -2, p85 subunit of phosphatidylinositol 3-kinase, Akt, and glycogen synthase kinase-3 (GSK-3). There was no significant change in the protein content of the insulin signaling proteins in any of the crude fractions after exercise or 3 h postexercise. Exercise had no significant effect on the phosphorylation of IRS-1 Tyr612 in any of the fractions. In contrast, exercise increased (P < 0.05) the phosphorylation of Akt Ser473 and GSK-3α/ß Ser9/21 in the cytosolic fraction only. In conclusion, exercise can increase phosphorylation of downstream insulin signaling proteins specifically in the cytosolic fraction but does not result in changes in the subcellular localization of insulin signaling proteins in human skeletal muscle. Change in the subcellular protein localization is therefore an unlikely mechanism to influence signal transduction pathways and cellular function in skeletal muscle after exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the considerable variation in milk composition found among mammals, a constituent common across all groups is lactose, the main sugar and osmole in most eutherians milk. Exceptions to this are the families Otariidae (fur seals and sea lions) and Odobenidae (walruses), where lactose has not been detected. We investigated the molecular basis for this by cloning α-lactalbumin, the modifier protein of the lactose synthase complex. A mutation was observed which, in addition to preventing lactose production, may enable otariids to maintain lactation despite the extremely long inter-suckling intervals during the mother's time at sea foraging (more than 23 days in some species).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rationale: The molecular mechanisms of muscle atrophy in chronic obstructive pulmonary disease (COPD) are poorly understood. In wasted animals, muscle mass is regulated by several AKT-related signaling pathways.
Objectives: To measure the protein expression of AKT, forkhead box class O (FoxO)-1 and -3, atrogin-1, the phosphophrylated form of AKT, p70S6K glycogen synthase kinase-3ß (GSK-3ß), eukaryotic translation initiation factor 4E binding protein-1 (4E-BP1), and the mRNA expression of atrogin-1, muscle ring finger (MuRF) protein 1, and FoxO-1 and -3 in the quadriceps of 12 patients with COPD with muscle atrophy and 10 healthy control subjects. Five patients with COPD with preserved muscle mass were subsequently recruited and were compared with six patients with low muscle mass.
Methods: Protein contents and mRNA expression were measured by Western blot and quantitative polymerase chain reaction, respectively.
Measurements and Main Results: The levels of atrogin-1 and MuRF1 mRNA, and of phosphorylated AKT and 4E-BP1 and FoxO-1 proteins, were increased in patients with COPD with muscle atrophy compared with healthy control subjects, whereas atrogin-1, p70S6K, GSK-3ß, and FoxO-3 protein levels were similar. Patients with COPD with muscle atrophy showed an increased expression of p70S6K, GSK-3ß, and 4E-BP1 compared with patients with COPD with preserved muscle mass.
Conclusions: An increase in atrogin-1 and MuRF1 mRNA and FoxO-1 protein content was observed in the quadriceps of patients with COPD. The transcriptional regulation of atrogin-1 and MuRF1 may occur via FoxO-1, but independently of AKT. The overexpression of the muscle hypertrophic signaling pathways found in patients with COPD with muscle atrophy could represent an attempt to restore muscle mass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated vasodilator mechanisms in the dorsal aorta of the elephant fish, Callorhinchus milii, using anatomical and physiological approaches. Nitric oxide synthase could only be located in the perivascular nerve fibres and not the endothelium of the dorsal aorta, using NADPH histochemistry and immunohistochemistry. In vitro organ bath experiments demonstrated that a NO/soluble guanylyl cyclase (GC) system appeared to be absent in the vascular smooth muscle, since the NO donors SNP (10−4 mol l−1) and SIN-1 (10−5 mol l−1) were without effect. Nicotine (3 × 10−4 mol l−1) mediated a vasodilation that was not affected by ODQ (10−5 mol l−1), l-NNA (10−4 mol l−1), indomethacin (10−5 mol l−1), or removal of the endothelium. In contrast, the voltage-gated sodium channel inhibitor, tetrodotoxin (10−5 mol l−1), significantly decreased the dilation induced by nicotine, suggesting that it contained a neural component. Pre-incubation of the dorsal aorta with the calcitonin gene-related peptide (CGRP) receptor antagonist, CGRP8–37 (10−6 mol l1) also caused a significant decrease in the nicotine-induced dilation. We propose that nicotine is mediating a neurally-derived vasodilation in the dorsal aorta that is independent of NO, prostaglandins and the endothelium, and partly mediated by CGRP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

n reptiles, accumulating evidence suggests that nitric oxide (NO) induces a potent relaxation in the systemic vasculature. However, very few studies have examined the source from which NO is derived. Therefore, the present study used both anatomical and physiological approaches to establish whether NO-mediated vasodilation is via an endothelial or neural NO pathway in the large arteries of the estuarine crocodile Crocodylus porosus. Specific endothelial nitric oxide synthase (NOS) staining was observed in aortic endothelial cells following nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry and endothelial NOS immunohistochemistry (IHC), suggesting that an endothelial NO pathway is involved in vascular control. This finding was supported by in vitro organ bath physiology, which demonstrated that the relaxation induced by acetylcholine (10-5 mol l-1) was abolished in the presence of the NOS inhibitor, N-omega-nitro-L-arginine (L-NNA; 10-4 mol l-1), the soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10-5 mol l-1), or when the endothelium was removed. Interestingly, evidence for a neural NO pathway was also identified in large arteries of the crocodile. Neural NOS was located in perivascular nerves of the major blood vessels following NADPH-d histochemistry and neural NOS IHC and in isolated aortic rings, L-NNA and ODQ, but not the removal of the endothelium, abolished the relaxation effect of the neural NOS agonist, nicotine (3x10-4 mol l-1). Thus, we conclude that the large arteries of C. porosus are potentially regulated by NO-derived from both endothelial and neural NOS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyaluronan (HA) is a glycosaminoglycan that is synthesized by a family of enzymes called hyaluronan synthases (HASs), of which there are three isoforms (HAS1, 2 and 3) in mammals. The HASs have different tissue expression patterns and function, indicating that synthesis of HA and formation of the HA matrix may be regulated by various factors. The HA matrix has an important role in renal water handling and the production of a concentrated urine. We investigated the distribution of HA and the expression of HAS1, HAS2 and HAS3 mRNAs in the kidney of the Spinifex hopping mouse, Notomys alexis, a native Australian desert rodent that is reported to produce the most concentrated urine of any mammal. After periods of three, seven and fourteen days of water deprivation, the distribution of renal HA changed considerably, and there was a general down-regulation of HAS mRNA expression. It is proposed that the regulation of HA synthesis by the different HAS isoforms during water deprivation in N. alexis, could be influenced by the molecular mass of the HA chains produced by each isoform, followed by the rate at which the individual HAS produces HA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of exercise intensity on skeletal muscle AMP-activated protein kinase (AMPK) signaling and substrate metabolism was examined in eight men cycling for 20 min at each of three sequential intensities: low (40 ± 2% Vo2 peak), medium (59 ± 1% Vo2 peak), and high (79 ± 1% Vo2 peak). Muscle free AMP/ATP ratio only increased at the two higher exercise intensities (P < 0.05). AMPK a1 (1.5-fold) and AMPK a2 (5-fold) activities increased from low to medium intensity, with AMPK a2 activity increasing further from medium to high intensity. The upstream AMPK kinase activity was substantial at rest and only increased 50% with exercise, indicating that, initially, signaling through AMPK did not require AMPK kinase posttranslational modification. Acetyl-CoA carboxylase (ACC)-ßphosphorylation was sensitive to exercise, increasing threefold from rest to low intensity, whereas neuronal NO synthase (nNOS)µphosphorylation was only observed at the higher exercise intensities. Glucose disappearance (tracer) did not increase from rest to low intensity, but increased sequentially from low to medium to high intensity. Calculated fat oxidation increased from rest to low intensity in parallel with ACCß phosphorylation, then declined during high intensity. These results indicate that ACCß phosphorylation is especially sensitive to exercise and tightly coupled to AMPK signaling and that AMPK activation does not depend on AMPK kinase activation during exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been speculated that creatine supplementation affects muscle glucose metabolism in humans by increasing muscle glycogen storage and up-regulating GLUT-4 protein expression. In the present study, we assessed the effects of creatine loading and prolonged supplementation on muscle glycogen storage and GLUT-4 mRNA and protein content in humans. A total of 20 subjects participated in a 6-week supplementation period during which creatine or a placebo was ingested. Muscle biopsies were taken before and after 5 days of creatine loading (20 g.day(-1)) and after 6 weeks of continued supplementation (2 g.day(-1)). Fasting plasma insulin concentrations, muscle creatine, glycogen and GLUT-4 protein content as well as GLUT-4, glycogen synthase-1 (GS-1) and glycogenin-1 (Gln-1) mRNA expression were determined. Creatine loading significantly increased total creatine, free creatine and creatine phosphate content with a concomitant 18 +/- 5% increase in muscle glycogen content (P<0.05). The subsequent use of a 2 g.day(-1) maintenance dose for 37 days did not maintain total creatine, creatine phosphate and glycogen content at the elevated levels. The initial increase in muscle glycogen accumulation could not be explained by an increase in fasting plasma insulin concentration, muscle GLUT-4 mRNA and/or protein content. In addition, neither muscle GS-1 nor Gln-1 mRNA expression was affected. We conclude that creatine ingestion itself stimulates muscle glycogen storage, but does not affect muscle GLUT-4 expression.