54 resultados para Stochastic nonlinear systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper poses and solves a new problem of consensus control where the task is to make the fixed-topology multi-agent network, with each agent described by an uncertain nonlinear system in chained form, to reach consensus in a fast finite time. Our development starts with a set of new sliding mode surfaces. It is proven that, on these sliding mode surfaces, consensus can be achieved if the communication graph has the proposed directed spanning tree. Next, we introduce the multi-surface sliding mode control to drive the sliding variables to the sliding mode surfaces in a fast finite time. The control Lyapunov function for fast finite time stability, motivated by the fast terminal sliding mode control, is used to prove the reachability of the sliding mode surface. A recursive design procedure is provided, which guarantees the boundedness of the control input.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Static nonlinear systems are common when the model of the kinematics of mechanical or civil structures is analyzed for instance kinematics of robotic manipulators. This paper addresses the maximum effort toward fault tolerance for any number of the locked actuators failures in static nonlinear systems. It optimally reconfigures the inputs via a mapping that maximally accommodates the failures. The mapping maps the failures to an extra action of healthy actuators that results to a minimum jump for the velocity of the output variables. Then from this mapping, the minimum jump of the velocity of the output is calculated. The conditions for a zero velocity jump of the output variables are discussed. This shows that, when the conditions of fault tolerance are maintained, the proposed framework is capable of fault recovery not only at fault instances but also at the whole output trajectory. The proposed mapping is validated by three case studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a robust learning control is developed for a class of single input single output (SISO) nonlinear systems with T-S fuzzy model. It is seen that the proposed sliding mode learning control with the powerful Lipshitz-like condition can guarantee the stability, convergence and robustness of the closed-loop system without involving any assumptions on uncertain system dynamics. In addition, theconcept that the local system with the maximum membership function dominates the system dynamic behaviours helps to greatly simplify the control system design. It will be further seen that the continuous learning control ensures the advantage of chattering-free that may occur in conventional sliding mode systems. Simulation examples are presented to demonstrate the effectiveness of the proposed learning control through the comparison with the H-infinity control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prediction interval (PI) is a promising tool for quantifying uncertainties associated with point predictions. Despite its informativeness, the design and deployment of PI-based controller for complex systems is very rare. As a pioneering work, this paper proposes a framework for design and implementation of PI-based controller (PIC) for nonlinear systems. Neural network (NN)-based inverse model within internal model control structure is used to develop the PIC. Firstly, a PI-based model is developed to construct PIs for the system output. This model is then used as an online estimator for PIs. The PIs from this model are fed to the NN inverse model along with other traditional inputs to generate the control signal. The performance of the proposed PIC is examined for two case studies. This includes a nonlinear batch polymerization reactor and a numerical nonlinear plant. Simulation results demonstrated that the proposed PIC tracking performance is better than the traditional NN-based controller.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is known that rock masses are inhomogeneous, discontinuous media composed of rock material and naturally occurring discontinuities such as joints, fractures and bedding planes. These features make any analysis very difficult using simple theoretical solutions. Generally speaking, back analysis technique can be used to capture some implicit parameters for geotechnical problems. In order to perform back analyses, the procedure of trial and error is generally required. However, it would be time-consuming. This study aims at applying a neural network to do the back analysis for rock slope failures. The neural network tool will be trained by using the solutions of finite element upper and lower bound limit analysis methods. Therefore, the uncertain parameter can be obtained, particularly for rock mass disturbance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper deals with the problem of partial state observer design for linear systems that are subject to time delays in the measured output as well as the control input. By choosing a set of appropriate augmented Lyapunov-Krasovskii functionals with a triple-integral term and using the information of both the delayed output and input, a novel approach to design a minimal-order observer is proposed to guarantee that the observer error is ε-convergent with an exponential rate. Existence conditions of such an observer are derived in terms of matrix inequalities for the cases with time delays in both the output and input and with output delay only. Constructive design algorithms are introduced. Numerical examples are provided to illustrate the design procedure, practicality and effectiveness of the proposed observer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper investigates the problem of robust observer-based stabilization for a class of one-sided nonlinear discrete-time systems subjected to unknown inputs. We propose a simple simultaneous state and input estimator. A nonlinear controller is then proposed to compensate for the effects of unknown inputs and to ensure asymptotic stability in a closed loop. Several mathematical artifacts are used to deduce stability conditions expressed in terms of linear matrix inequalities. To show high performances of the proposed technique, a relevant example is provided with comparisons to recent results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, we proposed an adaptive fuzzy multi-surface sliding control (AFMSSC) for trajectory tracking of 6 degrees of freedom inertia coupled aerial vehicles with multiple inputs and multiple outputs (MIMO). It is shown that an adaptive fuzzy logic-based function approximator can be used to estimate the system uncertainties and an iterative multi-surface sliding control design can be carried out to control flight. Using AFMSSC on MIMO autonomous flight systems creates confluent control that can account for both matched and mismatched uncertainties, system disturbances and excitation in internal dynamics. It is proved that the AFMSSC system guarantees asymptotic output tracking and ultimate uniform boundedness of the tracking error. Simulation results are presented to validate the analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Prediction interval (PI) has been extensively used to predict the forecasts for nonlinear systems as PI-based forecast is superior over point-forecast to quantify the uncertainties and disturbances associated with the real processes. In addition, PIs bear more information than point-forecasts, such as forecast accuracy. The aim of this paper is to integrate the concept of informative PIs in the control applications to improve the tracking performance of the nonlinear controllers. In the present work, a PI-based controller (PIC) is proposed to control the nonlinear processes. Neural network (NN) inverse model is used as a controller in the proposed method. Firstly, a PI-based model is developed to construct PIs for every sample or time instance. The PIs are then fed to the NN inverse model along with other effective process inputs and outputs. The PI-based NN inverse model predicts the plant input to get the desired plant output. The performance of the proposed PIC controller is examined for a nonlinear process. Simulation results indicate that the tracking performance of the PIC is highly acceptable and better than the traditional NN inverse model-based controller.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Functional observer design for Multi-Input Multi-Output (MIMO) Linear Time-Invariant (LTI) systems with multiple mixed time delays in the states of the system is addressed. Two structures for the design of a minimum-order observer are considered: 1 - delay-dependent, and 2 - internal-delay independent. The parameters of the delay-dependent observer are designed using the Lyapunov Krasovskii approach. The delay-dependent exponential stability of the observer for a specified convergence rate and delay values is guaranteed upon the feasibility of a set of Linear Matrix Inequalities (LMIs) together with a rank condition. Using the descriptor transformation, a modified Jensen's inequality, and improved Park's inequality, the results can be less conservative than the available functional observer design methods that address LTI systems with single state delay. Furthermore, the necessary and sufficient conditions of the asymptotic stability of the internal-delay independent observer are obtained, which are shown to be independent of delay. Two illustrative numerical examples and simulation studies confirm the validity and highlight the performance of the proposed theoretical achievements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we address the problem of unknown input observer design, which simultaneously estimates state and unknown input, of a class of nonlinear discrete-time systems with time-delay. A novel approach to the state estimation problem of nonlinear systems where the nonlinearities satisfy the one-sided Lipschitz and quadratically inner-bounded conditions is proposed. This approach also allows us to reconstruct the unknown inputs of the systems. The nonlinear system is first transformed to a new system which can be decomposed into unknown-input-free and unknown-input-dependent subsystems. The estimation problem is then reduced to designing observer for the unknown-input-free subsystem. Rather than full-order observer design, in this paper, we propose observer design of reduced-order which is more practical and cost effective. By utilizing several mathematical techniques, the time-delay issue as well as the bilinear terms, which often emerge when designing observers for nonlinear discrete-time systems, are handled and less conservative observer synthesis conditions are derived in the linear matrix inequalities form. Two numerical examples are given to show the efficiency and high performance of our results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper examines the design of minimal-order residual generators for the purpose of detecting and isolating actuator and/or component faults in dynamical systems. We first derive existence conditions and design residual generators using only first-order observers to detect and identify the faults. When the first-order functional observers do not exist, then based on a parametric approach to the solution of a generalized Sylvester matrix equation, we develop systematic procedures for designing residual generators utilizing minimal-order functional observers. Our design approach gives lower-order residual generators than existing results in the literature. The advantages for having such lower-order residual generators are obvious from the economical and practical points of view as cost saving and simplicity in implementation can be achieved, particularly when dealing with high-order complex systems. Numerical examples are given to illustrate the proposed fault detection and isolation schemes. In all of the numerical examples, we design minimum-order residual generators to effectively detect and isolate actuator and/or component faults in the system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we address the problem of observer design for a class of nonlinear discrete-time systems in the presence of delays and unknown inputs. The nonlinearities studied in this work satisfy the one-sided Lipschitz and quadratically inner-bounded conditions which are more general than the traditional Lipschitz conditions. Both H∞ observer design and asymptotic observer design with reduced-order are considered. The designs are novel compared to other relevant nonlinear observer designs subject to time delays and disturbances in the literature. In order to deal with the time-delay issue as well as the bilinear terms which usually appear in the problem of designing observers for discrete-time systems, several mathematical techniques are utilized to deduce observer synthesis conditions in the linear matrix inequalities form. A numerical example is given to demonstrate the effectiveness and high performance of our results.