68 resultados para Spectroscopy Fourier transform infrared


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An accurate kinetics model is essential for understanding the curing mechanism and predicting the end properties of polymer materials. Graphite/epoxy AS4/ 8552 prepreg is a recent high-performance thermosetting composite modified with thermoplastic, which is being used in the manufacture of aircraft and military structures. The isothermal cures of this system along with another thermoplastic toughened high-performance prepreg, the T800H/3900-2 system, were investigated by real-time Fourier transform infrared (FTIR) spectroscopy. The cure rate was quantitatively analyzed based on the concentration profiles of both the epoxy and primary amine groups. Three autocatalytic models were used to determine kinetics parameters for both composite systems. The model which utilizes an empirical term, the final relative conversion (at different isothermal curing temperatures), describes the experimental data of both systems more satisfactorily than the model which applies a diffusion factor. The modeling results suggest that the curing of epoxy within both prepregs can be assumed to be a second order process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase behavior, hydrogen bonding interactions and morphology of poly(hydroxyether of bisphenol A) (phenoxy) and poly(var epsilon-caprolactone)-block-poly(2-vinyl pyridine) (PCL-b-P2VP) were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy and atomic force microscopy (AFM). In this A-b-B/C type block copolymer/homopolymer system, both P2VP and PCL blocks have favorable intermolecular interaction towards phenoxy via hydrogen bonding. However, the hydrogen bonding between P2VP and phenoxy is significantly stronger than that between PCL and phenoxy. Selective hydrogen bonding between phenoxy/P2VP pair at lower phenoxy contents and co-existence of two competitive hydrogen bonding interactions between phenoxy/P2VP and phenoxy/PCL pairs at higher phenoxy contents were observed in the blends. This leads to the formation of a variety of composition dependent nanostructures including wormlike, hierarchical and core–shell morphologies. The blends became homogeneous at 95 wt% phenoxy where both blocks of the PCL-b-P2VP were miscible with phenoxy due to hydrogen bonding. In the end, a model was proposed to explain the microphase morphology of blends based on the experimental results obtained. The swelling of the PCL-b-P2VP block copolymer by phenoxy due to selective hydrogen bonding causes formation of different microphases

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured complexes were prepared from poly(ε-caprolactone)-block-poly(2-vinylpyridine) (PCL-b-P2VP) and poly(4-vinylphenol) (PVPh) in tetrahydrofuran (THF). The phase behavior, specific interactions, and morphology were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). In this A-b-B/C type block copolymer/homopolymer system, both blocks of the PCL-b-P2VP block copolymer have favorable intermolecular interaction toward PVPh via hydrogen bonding, but the interaction between P2VP block and PVPh is significantly stronger than that between PCL block and PVPh. It was found that the disparity in competitive intermolecular interactions, specifically PVPh and P2VP block interact strongly whereas PVPh and PCL block interact weakly, leads to the formation of a variety of nanostructures depending on PVPh concentration. Spherical micelles of 30−40 nm in diameter were obtained in the complex with 10 wt % PVPh, followed by wormlike micelles with size in the order of 40−50 nm in the complexes with 30−60 wt % PVPh. At low PVPh concentrations, PCL interacts weakly with PVPh, whereas in the complexes containing more than 20 wt % PVPh, the PCL block began to interact considerably with PVPh, leading to the formation of composition-dependent nanostructures. The complex becomes homogeneous with PVPh content beyond 60 wt %, since a sufficient amount of PVPh is available to form hydrogen bonds with both PCL and P2VP. Finally, a model was proposed to explain the self-assembly and microphase morphology of these complexes based on the experimental results obtained. The competitive hydrogen-bonding interactions cause the self-assembly and formation of different microphase morphologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured poly(ε-caprolactone)-block-poly(2-vinyl pyridine) (PCL-b-P2VP)/poly(acrylic acid) (PAA) interpolyelectrolyte complexes (IPECs) were prepared by casting from THF/ethanol solution. The morphological behaviour of this amphiphilic block copolymer/polyelectrolyte complexes with respect to the composition was investigated in a solvent mixture. The phase behaviour, specific interactions and morphology were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy (OM), dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelle formation occurred due to the aggregation of hydrogen bonded P2VP block and polyelectrolyte (PAA) from non-interacted PCL blocks. It was observed that the hydrodynamic diameter (Dh) of the micelles in solution decreased with increasing PAA content up to 40 wt%. After 50 wt% PAA content, Dh again increased. The micelle formation in PCL-b-P2VP/PAA IPECs was due to the strong intermolecular hydrogen bonding between PAA homopolymer units and P2VP blocks of the block copolymer. The penetration of PAA homopolymers into the shell of the PCL-b-P2VP block copolymer micelles resulted in the folding of the P2VP chains, which in turn reduced the hydrodynamic size of the micelles. After the saturation of the shell with PAA homopolymers, the size of the micelles increased due to the absorption of added PAA onto the surface of the micelles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Health authorities around the world advise ‘limiting consumption of trans   fatty acids’, however in Australia the trans fatty acid (TFA) content is not  required to be listed in the nutrition information panel unless a declaration or nutrient claim is made about fatty acids or cholesterol. Since there is limited knowledge about trans fatty acid levels in processed foods available in Australia, this study aimed to determine the levels of TFA in selected food items known to be sources of TFA from previously published studies. Food items (n=92) that contain vegetable oil and a total fat content greater than 5% were included. This criterion was used in conjunction with a review of similar studies where food items were found to contain high levels of trans fatty acids. Lipids were extracted using solvents. Gravimetric methods were used to determine total fat content and trans fatty acid levels were quantified by Attenuated Total Reflectance Fourier Transform Infrared spectroscopy. High levels of trans fatty acids were found in certain items in the Australian food supply, with a high degree of variability. Of the samples analysed, 13  contained greater than 1 g of trans fatty acids per serving size, the highest value was 8.1 g/serving. Apart from when the nutrition information panel states that the content is less than a designated low level, food labels sold in Australia do not indicate trans fatty acid levels. We suggested that health authorities seek ways to assist consumers to limit their intakes of trans fatty acids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the current work, two different coatings, nitrocarburised (CN) and titanium carbonitride (TiCN) on M2 grade high speed tool steel, were prepared by commercial diffusion and physical vapour deposition (PVD) techniques, respectively. Properties of the coating were characterised using a variety of techniques such as Glow-Discharge Optical Emission Spectrometry (GD-OES) and Scanning Electron Microscopy (SEM). Three non-commercial, oil-based lubricants with simplified formulations were used for this study. A tribological test was developed in which two nominally geometrically-identical crossed cylinders slide over each other under selected test conditions. This test was used to evaluate the effectiveness of a pre-applied lubricant film and a surface coating for various conditions of sliding wear. Engineered surface coatings can significantly improve wear resistance of the tool surface but their sliding wear performances strongly depend on the type of coating and lubricant combination used. These coating-lubricant interactions can also have a very strong effect on the useful life of the lubricant in a tribological system. Better performance of lubricants during the sliding wear testing was achieved hen used with the nitrocarburised (CN) coating. To understand the nature of the interactions and their possible effects on the coating-lubricant system, several surface analysis techniques were used. The molecular level investigation of Fourier Transform Infrared Spectroscopy (FTIR) revealed that oxidative degradation occurred in all used oil-based lubricants during the sliding wear test but the degradation behaviour of oil-based lubricants varied with the coating-lubricant system and the wear conditions. The main differences in the carbonyl oxidation region of the FTIR spectra (1900-1600 cm-1) between different coating-lubricant systems may relate to the effective lifetime of the lubricant during the sliding wear test. Secondary Ion Mass Spectrometry (SIMS) depth profiling shows that the CN coating has the highest lubricant absorbability among the tested tool surfaces. Diffusion of chlorine (C1), hydrogen (H) and oxygen (O) into the surface of subsurface of the tool suggested that strong interactions occurred between lubricant and tool surface during the sliding wear test. The possible effects of the interactions on the performance of whole tribological system are also discussed. The study of Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) indicated that the envelope of hydrocarbons (CmHn) of oil lubricant in the positive TOF-SIMS spectra shifted to lower mass fragment after the sliding wear testing due to the breakage of long-chain hydrocarbons to short-chain ones during the degradation of lubricant. The shift of the mass fragment range of the hydrocarbon (CmHn) envelope caries with the type of both tool surface and lubricant, again confirming that variation in the performance of the tool-lubricant system relates to the changes in surface chemistry due to tribochemical interactions at the tool-lubricant interface under sliding wear conditions. The sliding wear conditions resulted in changes not only in topography of the tool surface due to mechanical interactions, as outlined in Chapter 5, but also in surface chemistry due to tribochemical interactions, as discussed in Chapters 6 and 7.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermooxidative degradation of poly (vinyl alcohol)/silica (PVA/SiO2) nanocomposite prepared with self-assembly monolayer (SAM) technique is investigated by using a thermogravimetry (TG) and Fourier transform infrared spectroscopy coupled thermogravimetry (FTIR/TG). The results show that although the thermooxidative degradation process of prepared nanocomposite is similar to that of the pure PVA, its thermooxidative stability has been greatly improved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blends of poly(2-vinyl pyridine)-block-poly(methyl methacrylate) (P2VP-b-PMMA) and poly(hydroxyether of bisphenol A) (phenoxy) were prepared by solvent casting from chloroform solution. The specific interactions, phase behavior and nanostructure morphologies of these blends were investigated by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). In this block copolymer/homopolymer blend system, it is established that competitive hydrogen bonding exists as both blocks of the P2VP-b-PMMA are capable of forming intermolecular hydrogen bonds with phenoxy. It was observed that the interaction between phenoxy and P2VP is stronger than that between phenoxy and PMMA. This imbalance in the intermolecular interactions and the repulsions between the two blocks of the diblock copolymer lead to a variety of phase morphologies. At low phenoxy concentration, spherical micelles are observed. As the concentration increases, PMMA begins to interact with phenoxy, leading to the changes of morphology from spherical to wormlike micelles and finally forms a homogenous system. A model is proposed to describe the self-assembled nanostructures of the P2VP-b-PMMA/phenoxy blends, and the competitive hydrogen bonding is responsible for the morphological changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report that ammonium oleate surfactants can help the dispersion of multiwalled boron nitride nanotubes (BNNTs) in water to form a BNNT solution stable for several months, which was due to the non-covalent functionalization of nanotube surfaces. Fourier Transform Infrared Spectroscopy (FTIR) and Photoluminescence (PL) analysis with synchrotron radiation source revealed that this BNNT aqueous solution preserves the intrinsic optical properties of BNNTs. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new fabric with potential in medical textiles has been developed by application of a surface coating on wool using pulsed plasma polymerization of HMDSO. This coating enabled a controllable MVTR and surface adhesion. MVTR in the range recommended for optimum wound healing was obtained by varying frequency, monomer pressure and deposition time. Lower surface adhesion was achieved. Peeling tests, contact angle measurements, SPM force curves and ATR FT-IR were used to characterize the surfaces for both wool and a PE model substrate. All these results were consistent with a decrease in surface energy after PP-HMDSO treatment. ATR FT-IR results showed a siloxane film with less organic Si(CH3)n groups and more SiOSi cross-links.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The corrosion inhibition mechanisms of new cerium and lanthanum cinnamate based compounds have been investigated through the surface characterisation of the steel exposed to NaCl solution of neutral pH. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy was used to identify the nature of the deposits on the metal surface and demonstrated that after accelerated tests the corrosion product commonly observed on steel (i.e. lepidocrocite, γ-FeOOH) is absent. The cinnamate species were clearly present on the steel surface upon exposure to NaCl solution for short periods and appeared to coordinate through the iron. At longer times the Rare Earth Metal (REM) oxyhydroxide species are proposed to form as identified through the bands in the 1400–1500 cm−1 region. These latter bands have been previously assigned to carbonate species adsorbed onto REM oxyhydroxide surfaces. The protection mechanism appears to involve the adsorption of the REM–cinnamate complex followed by the hydrolysis of the REM to form a barrier oxide on the steel surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel one-step hydrothermal coating process was used to produce nanohydroxyapatite (nano-HA) coating on a titanium–niobium (TiNb) alloy substrate in a newly designed solution containing calcium and phosphate ions. The morphology of the coating was studied using scanning electron microscopy. The phase identification of the coating was carried out using X-ray diffraction, attenuated total reflectance Fourier transform infrared spectroscopy and transmission electron microscopy. The reaction between the surface of TiNb alloy and the solution during the hydrothermal process was studied by Xray photoelectron spectroscopy. Results show that the coating formed on the surface of TiNb alloy was composed of nano-HA particles. During the hydrothermal process, TiO2 and Nb2O5 formed on the TiNb alloy surface and hydrated to Ti(OH)4 and Nb(OH)5, respectively. Calcium phosphate nucleated and grew into a layer of nano-HA particles on the surface of TiNb alloy under the hydrothermal conditions. The crystallinity of the nano-HA coating was improved with the increase in hydrothermal treatment temperature and time duration. Nano-HA coating with good crystallinity was produced on the TiNb alloy via the hydrothermal process at a temperature of 200 ºC for 12 h.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functionalization of multi-walled carbon nanotubes (MWCNTs) plays an important role in eliminating nanotube aggregation for reinforcing polymeric materials. We prepared a new class of natural rubber (NR)/MWCNT composites by using latex compounding and self-assembly technique. The MWCNTs were functionalized with mixed acids (H2SO4/HNO3 = 3:1, volume ratio) and then assembled with poly (diallyldimethylammonium chloride) and latex particles. The Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy were used to investigate the assembling mechanism between latex particles and MWCNTs. It is found that MWCNTs are homogenously dispersed in the natural rubber (NR) latex as individual nanotubes since strong self-aggregation of MWCNTs has been greatly depressed with their surface functionalization. The well-dispersed MWCNTs produce a remarkable increase in the tensile strength of NR even when the amount of MWCNTs is only 1 wt.%. Dynamic mechanical analysis shows that the glass transition temperature of composites is higher and the inner-thermogenesis and thermal stability of NR/MWCNT composites are better, when compared to those of the pure NR. The marked improvement in these properties is largely due to the strong interfacial adhesion between the NR phase and MWCNTs. Functionalization of MWCNTs represents a potentially powerful technology for significant reinforcement of natural rubber materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Co2+ sorption of two wool powders was investigated using its radioisotope 57Co (T1/2=271.8 days and γ=122.1 and 136.5 keV) as a tracer. The effects of the type of buffer, the pH value, the contact time and the initial concentration of Co2+ on the sorption behaviour of wool powders were studied. The Co2+ releasing ability of wool powders and the re-use of wool powders to sorb Co2+ were also examined. The optimum sorption of Co2+ by the powders occurred at pH 8 in phosphate buffer and pH 10 in ammonium sulphate buffer. Fourier-transform infrared spectroscopy (FTIR) was used to study the changes in chemical structure of the wool after exposure to both buffer solutions. Compared to the untreated wool fibre, the fine wool powders showed rapid sorption rates and high sorption capacities for Co2+. Co2+ ions were recovered after exposing the Co2+ loaded wool to HCl (0.1 M) and buffer at pH 3 (glycine/sodium chloride). After releasing Co2+ ions from wool powders, the efficiency of wool powders re-used to sorb Co2+ was 80% of that of the fresh wool powders. It is concluded from this study that wool powder can be used as an efficient sorbent to remove and release Co2+ from solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smooth polymerized surfaces, suitable for biochemical and biomedical applications, were deposited using a modified plasma enhanced chemical vapour deposition method with acetylene as a reaction precursor. Horseradish peroxidase (HRP) activity assays showed that the protein immobilized on the plasma polymerized surfaces maintained its biological function for a much longer period of time compared to that on uncoated surfaces. The kinetics of HRP attachment to the plasma polymerized surfaces were analyzed using quartz crystal microbalance with dissipation analysis. Spectroscopic ellipsometry and attenuated total reflection Fourier transform infrared spectroscopy were used to determine the thickness and the quantity of the attached protein. The results showed that the plasma polymerized surfaces provided a high density of attachment sites to covalently immobilize a dense monolayer of proteins.