33 resultados para Sorption isotherms


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unlike other fibres, wool felts readily when agitated in the presence of water. For this reason, only the minimum necessary quantity of water is used when the garments are drycleaned. However, wool fibres are often deliberately felted to obtain a warm bulky handle by controlled addition of water to the solvent. This process is known as solvent milling and recently, it has become a popular alternative to the traditional milling in water alone. Although the factors which influence milling in solvent are known, the relationships between them are not well defined. A comprehensive study of the relationship between water distribution and milling shrinkage during agitation of wool in perchloroethylene has been carried out in this thesis. The Karl Fischer method of determination was used throughout to establish the distribution of water between the wool fibre and the solvent liquor. The emphasis was placed on practical production variables. The role of surfactant in affecting milling shrinkage through its effect on the transport of water to the fibre from the solvent was examined. The ability of a suitable surfactant in promoting even and rapid sorption of water by the fibre was related to the colloidal properties of the milling liquor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wool powders with various particle sizes have been produced using different milling techniques. Scanning electron microscopy (SEM) showed gradual breakdown of the fibre as it was progressively converted into powder form. Chlorination enhanced the effectiveness of subsequent air-jet milling. X-ray photoelectron spectroscopy (XPS) revealed an increase in the surface concentrations of oxygen and nitrogen, and a decrease in carbon and sulphur on conversion of the fibres into powders, as the cortex became exposed on the powder surface. An increased surface concentration of cysteic acid was observed for the chlorinated powder. Rapid uptake of dye by wool powders was observed in situations where there was virtually no uptake by the original fibre. Hydrophobic dyes were more readily sorbed than were hydrophilic dyes. The chlorination treatment led to a decrease in the sorption of acid dyes. Confocal microscopy, used in conjunction with a fluorescent stain, showed that chemicals were able to penetrate wool particles, even at room temperature. The rate and extent of uptake of dye by the finer powders were comparable to that obtained with activated charcoal, even though the surface area of the charcoal was 100 times greater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA–didodecyldimethylammonium (DNA–DDDA) electrostatic complex was prepared and characterized through Fourier transformation infrared (FT-IR), 1H NMR and circular dichroism (CD) spectroscopy. When the dye molecule aqueous solutions were used as the subphase, the interaction between three dye molecules, acridine orange (AO), ethidium bromide (EB) and 5,10,15,20-tetrakis(4-N-methylpyridyl)porphine tetra(p-toluenesulfonate) (TMPyP) and the complex at air/solution interface were investigated through the surface pressure–area (π–A) isotherms, Brewster angle microscopy and UV-Vis spectroscopy, respectively. Our investigation indicates that the interaction capabilities of the three dyes to DNA–DDDA complex are different and present an order of TMPyP>AO>EB. For the interaction forms, we believe that TMPyP intercalates into the double helix of DNA, and AO adsorbs onto the surface of the DNA. As for EB, the measured signal is too weak to give a definite interaction form in the present experiment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The miscibility of poly(d,l-lactide-co-glycolide) (PLG) with three amphiphilic molecules and the interaction of the PLG/surfactant mixtures with DNA at air/water interface are investigated by π-A isotherms, Brewster angle microscopy (BAM) and atomic force microscopy (AFM) techniques. The π-A isotherms of the PLG mixtures with cationic C12AzoC6PyBr, and C12AzoC6N(CH3)3Br, are quite different from the π-A isotherm of pure PLG on water subphase. In contrast to the case, the π-A isotherm of PLG mixed with nonionic C12AzoC6OPy is almost identical to the pure PLG except some increasing of molecular area. Similar phenomena are observed on DNA subphase. The in situ BAM and ex situ AFM observations demonstrate that the dispersion of PLG at air/water interface becomes good when it mixes with the two cationic surfactants, whereas quite poor due to the phase separation when it mixes with the nonionic amphiphilic molecule. Based on these results we conclude that the cationic surfactants can affect the conformation change of PLG at air/water interface and figure a well miscibility with polymer whereas the nonionic amphiphilic molecule presents poor miscibility. In addition, the even mixing of the PLG and the cationic surfactants is favorable for the adsorption to DNA more effectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we investigated the Langmuir film and Langmuir–Blodgett (LB) monolayer film of a nonionic amphiphilic molecule, 4-(6-p-pyridyloxyl)hexyloxyl-4′-dodecyloxylazobenzene (C12AzoC6Py) and its mixture with poly(d,l-lactide-co-glycolide) (PLG) at different subphase pH values (2.0, 2.6, 3.3, 4.4, and 6.5, respectively) by surface pressure–area (π–A) isotherms, in situ interface Brewster angle microscopy (BAM), and ex situ atomic force microscopy (AFM). For pure C12AzoC6Py, its π–A isotherms display a plateau when the subphase pH value is lower than 3.0. The pressure of the plateau increases with the decrease of pH until 2.0. Over the plateau, the π–A isotherms become almost identical to the one under neutral conditions. The appearance of such a plateau can be explained as the coexistence of protonation and unprotonation of pyridyl head groups of the employed amphiphile. In contrast to the homogeneous surface morphology of pure C12AzoC6Py near the plateau by BAM observation, the surface in the case of its mixing with PLG exhibits a dendritic crystalline state under low surface pressure at subphase pH lower than 3.0. The crystalline state becomes soft and gradually melts into homogeneous aggregates with surface pressure increasing to a higher value than that of the plateau. Meanwhile, the hydrolysis of PLG in the mixture system at the interface has been affirmed to be restrained to a very large extent. And the PLG was believed to be compelled to the up layer of the LB film due to the phase separation, which is examined by AFM. Based on the experimental results, the corresponding discussion was also performed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Co2+ sorption of two wool powders was investigated using its radioisotope 57Co (T1/2=271.8 days and γ=122.1 and 136.5 keV) as a tracer. The effects of the type of buffer, the pH value, the contact time and the initial concentration of Co2+ on the sorption behaviour of wool powders were studied. The Co2+ releasing ability of wool powders and the re-use of wool powders to sorb Co2+ were also examined. The optimum sorption of Co2+ by the powders occurred at pH 8 in phosphate buffer and pH 10 in ammonium sulphate buffer. Fourier-transform infrared spectroscopy (FTIR) was used to study the changes in chemical structure of the wool after exposure to both buffer solutions. Compared to the untreated wool fibre, the fine wool powders showed rapid sorption rates and high sorption capacities for Co2+. Co2+ ions were recovered after exposing the Co2+ loaded wool to HCl (0.1 M) and buffer at pH 3 (glycine/sodium chloride). After releasing Co2+ ions from wool powders, the efficiency of wool powders re-used to sorb Co2+ was 80% of that of the fresh wool powders. It is concluded from this study that wool powder can be used as an efficient sorbent to remove and release Co2+ from solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrafine protein particles have been fabricated from natural fibres, such as silk and wool. Our studies suggested that particles could be used for fabricating tough macro-porous composites scaffolds for tissue engineering. They are also efficient for reversible binding of metal ions. We are currently analyzing the sorption properties, biocompatibility and biodegradability of a range of particles to evaluate possibility for biomedical and healthcare applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pentachlorophenol (PCP) is a toxic chemical, often used in the formulation of pesticide, herbicide, anti fungal agent, bactericide and wood preservative. This study is aimed at evaluating the potential of membrane bioreactor (MBR) to treat PCP contaminated wastewater. Synthetic wastewater with COD of 600 mg/L was fed into the MBR at varied PCP loading rate of 12–40 mg/m3/d. A PCP removal rate of 99% and a COD removal rate of 95% were achieved at a hydraulic retention time of 12 hs and a mixed liquor suspended solids (MLSS) concentration of 10,000 mg/L. When sodium pentachlorophenol (NaPCP), which has higher solubility in water, was used in the second phase of the study, at loading rates varying from 20 to 200 mg/m3·d, the removal rate of NaPCP was higher than 99% and the removal rate of COD was more than 96%. It was also found that at higher biomass concentrations, biosorption played an important role besides the biodegradation process. Batch experiments conducted in this study revealed that the sorption capacity to be 0.63 (mg PCP/g biomass) and occurred rapidly within 60 min. This phenomenon could enhance the PCP degradation through increased contact between microorganism and PCP. Further, the membrane resistance was low (trans-membrane pressure of 14 kPa) even after more than 100 ds of operation. In addition, the toxic level of PCP in the influent could have induced the microorganisms to secrete more extra-cellular polymeric substances (EPS) for their protection, which in turn must have increased the viscosity of the mixed liquor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wastewater treatment has always been a major concern in the developed countries. Over the last few decades, activated carbon adsorption has gained importance as an alternative tertiary wastewater treatment and purification process. In this study, granular activated carbon (GAC) adsorption was evaluated in terms of total organic carbon (TOC) removal from low strength synthetic wastewater. This paper provides details on adsorption experiments conducted on synthetic wastewater to develop suitable adsorption isotherms. Although the inorganics used in the synthetic wastewater solution had an overall unfavourable effect on adsorption of organics, the GAC adsorption system was found to be effective in removing TOC from the wastewater. This study showed that equation of state (EOS) theory was able to fit the adsorption isotherm results more precisely than the most commonly used Freundlich isotherm. Biodegradation of the organics with time was the most crucial and important aspect of the system and it was taken into account in determining the isotherm parameters. Initial organic concentration of the wastewater was the determining factor of the model parameters, and hence the isotherm parameters were determined covering a wide range of initial organic concentrations of the wastewater. As such, the isotherm parameters derived using the EOS theory could predict the batch adsorption and fixed bed adsorption results of the multi-component system successfully. The isotherm parameters showed a significant effect on the determination of the mass transfer coefficients in batch and fixed bed systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The frontal analysis method was used to measure the adsorption isotherms of phenol, 4-chlorophenol, p-cresol, 4-methoxyphenol and caffeine on a series of columns packed with home-made alkyl-phenyl bonded silica particles. These ligands consist of a phenyl ring tethered to the silica support via a carbon chain of length ranging from 0 to 4 atoms. The adsorption isotherm models that fit best to the data account for solute–solute interactions that are likely caused by π–π interactions occurring between aromatic compounds and the phenyl group of the ligand. These interactions are the dominant factor responsible for the separation of low molecular weight aromatic compounds on these phenyl-type stationary phases. The saturation capacities depend on whether the spacer of the ligands have an even or an odd number of carbon atoms, with the even alkyl chain lengths having a greater saturation capacity than the odd alkyl chain lengths. The trends in the adsorption equilibrium constant are also significantly different for the even and the odd chain length ligands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have shown that for some populations of marine turtle, individuals move along narrow migration corridors in the open ocean. It has been suggested that these migration corridors may correspond with nearsurface oceanographic features that can be detected by remote sensing. This idea is examined by superimposing the tracks of green turtles (Chelonia mydas) migrating from Ascension Island to Brazil, on sea surface temperature (SST) data derived from Advanced Very High Resolution Radiometer (AVHRR) images. The turtles did not follow specific isotherms during migration nor make turns en-route where specific thermal cues were encountered. These results suggest that for this population, SST plays a minimal role in influencing the exact route that individuals follow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The controlled release of salicylic acid (SA), a key phytohormone, was mediated by using a novel decanethiol gatekeeper system grafted onto mesoporous silica nanoparticles (MSNs). The decanethiol was conjugated only to the external surfaces of the MSNs through glutathione (GSH)-cleavable disulfide linkages and the introduction of a process to assemble gatekeepers only on the outer surface so that the mesopore area can be maintained for high cargo loading. Raman and nitrogen sorption isotherm analyses confirmed the successful linkage of decanethiol to the surface of MSNs. The in vitro release of SA from decanethiol gated MSNs indicated that the release rate of SA in an environment with a certain amount of GSH was significantly higher than that without GSH. More importantly, in planta experiments showed the release of SA from decanethiol gated MSNs by GSH induced sustained expression of the plant defense gene PR-1 up to 7 days after introduction, while free SA caused an early peak in PR-1 expression which steadily decreased after 3 days. This study demonstrates the redox-responsive release of a phytohormone in vitro and also indicates the potential use of MSNs in planta as a controlled agrochemical delivery system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activated carbon (AC) prepared from luffa sponge was firstly used as an adsorbent to remove Cr(VI) from aqueous solution. The Cr(VI) adsorption behaviors of AC under different conditions, including initial Cr(VI) concentration, quantity of AC, solution pH, and temperature were investigated. The optimal conditions for adsorption of Cr(VI) by AC were pH = 1, initial Cr(VI) concentration = 80 mg/L, T = 303 K, and AC content = 1.6 g/L. The adsorption kinetics could be described by the pseudo-second-order model. Fourier transform infrared spectroscopy was used to investigate the sorption mechanism. Some functional groups such as C–O and O–H were formed on the carbon surface, which could then react with Cr(VI). The surface structure of AC before and after adsorption was analyzed by scanning electronic microscopy. Adsorbed ions choked some of the pores in AC after adsorption. The Brunauer–Emmett–Teller surface area and average pore size of the AC were 834.13 m2/g and 5.17 nm, respectively. The maximum adsorption of Cr(VI) by AC was 149.06 mg/g, which makes AC prepared from luffa sponge promising for removing Cr(VI) from wastewater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activated carbon (AC) developed from loofah sponge with phosphoric acid activation was applied to absorb cefalexin (CEX) in aqueous solution. AC was characterized by N2 adsorption–desorption isotherms and Fourier transform infrared spectroscopy (FTIR). Factors influencing the adsorption process were investigated. The equilibrium adsorption isotherms and kinetics of CEX were also studied. The results showed that AC prepared from loofah sponge had rough surface and abundant pores. The determination results of specific surface area (810.12 m2/g) and average pore size (5.28 nm) suggested the high adsorption capability. At low concentration, the AC could adsorb about 95% of CEX. The adsorption effect was independent of the temperature and pH. The maximum adsorption amount of CEX was about 55.11 mg/g at 308 K. The equilibrium data agreed well with Freundlich isotherm equation (R2 = 0.9957) at 308 K, which indicated multilayer adsorption. FTIR analysis suggested the existence of phosphorus-containing functional groups, C–O bond, and C=C bond on the surface of AC of which the peak intensity of AC after adsorption was slightly lower after adsorption, indicating that the AC surface groups interacted with or were covered by the CEX species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effective oil/water separation and removal of organic molecules from water are of worldwide importance for water source protection. Multifunctional sorbent materials with excellent sorption capacity, stability, and recyclability properties need to be developed. Here, flexible and multifunctional polymer/porous boron nitride nanosheets (BNNSs) membranes with high water permeability, exhibiting high effectiveness and stability in the purification of simulated wastewater tainted with either oil/water emulsion or organic molecules, are reported. Remarkably, the flexible nature of these porous membranes enables simplicity of operation for water remediation processing and ease of post-processing collection. The composite membrane also displays a remarkably high permeability of 8 × 104 L μm m-2 h-1 bar-1, roughly three orders of magnitude higher than pure polymer, and excellent filter efficiencies for the pharmaceuticals ciprofloxacin, chlortetracycline, and carbamazepine (up to 14.2 L g-1 of BNNSs in the composite membrane for a concentration of 10 mg L-1 ciprofloxacin) and the dye methylene blue (up to 9.3 L g-1 of BNNSs in the composite membrane at a concentration of 30 mg L-1). Exhausted membranes can be readily rejuvenated by simple washing with retention of their high-performance characteristics. The results demonstrate the potential efficacy and practicality of these membranes for water cleaning.