39 resultados para Sol-gels


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigated the use of titanium dioxide sol-gel coatings to photo-catalyse red wine stains on wool fabrics. Coatings were produced by the hydrolysis and condensation of titanium butoxide (Ti(OC4H9)4) on the surface of wool fabrics after pad application. Coatings were partially converted to the anatase form of titanium dioxide by prolonged immersion in boiling water. The coating presence was confirmed using scanning electron microscopy, UVspectrophotometry and atomic force microscopy. Coated samples were measured for photo-catalytic activity by degrading red wine stains from the surface of the coated fabric. The level of photocatalysis was determined for each of the coating systems after 168 hours. Red wine stains were photo-catalysed and level of staining was reduced from the UV exposed surface of the coated wool fabric.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, titanium (Ti) samples were surface-modified by titania (TiO2), silica (SiO2) and hydroxyapatite (HA) coatings using a sol-gel process. The bioactivity of the film-coated Ti samples was investigated by cell attachment and morphology study using human osteoblast-like SaOS-2 cells. Results of the cell attachment indicated that the densities of cell attachment on the surfaces of Ti samples were significantly increased by film coatings; the density of cell attachment on HA film-coated surface was higher than those on TiO2 and SiO2 film-coated surfaces. Cell morphology study showed that the cells attached, spread and grew well on the three kinds of film-coated surfaces. It can be concluded that the three kinds of film coatings can bioactivate the surfaces of Ti samples effectively. Overall, Ti sample with HA film-coated surface exhibited the best bioactivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydroxyapatite (HA) was coated on the surface of a titanium-niobium (Ti-Nb) alloy by a sol-gel process. Triethyl phosphite and calcium nitrate were used as the phosphorus (P) and calcium (Ca) precursors respectively to prepare a Ca/P sol solution. The Ti-Nb alloy was dip-coated in the sol and heated at 600°C for 30 minutes. X-ray diffraction (XRD) analysis indicated the major phase constituent of the coating after heat treatment was HA. Scanning electron microscopy (SEM) observation showed that a few cracks were distributed on the HA coating. The in-vitro bioactivity of the HA coated Ti-Nb alloy was assessed using a cell culture of SaOS-2 osteoblast-like cells. The density of cell attachment was determined by MTT assay; the cell morphology was observed by SEM. Results indicated that the density of cell attachment on the surface of the Ti-Nb alloy was significantly increased by HA coating. Cell morphology observation showed that cells attached, spread and grew well on the HA coated surface. It can be concluded that the HA coating improved the in-vitro bioactivity of Ti-Nb alloy effectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates the possibility of producing photochromic wool fabrics using a silica sol-gel coating method. Silicas made from sol-gel methods are uniquely suited to host photochromic dyes for developing colour-changing wool. The achieved photochromic effects have opened a new product area for fashion effects on wool textiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solvent and ion dynamics in PMMA based gels have been investigated as a function of the loading of nanosized TiO2 particles. The gels have a molar ratio of 46.5:19:4.5:30 of ethylene carbonate (EC), propylene carbonate (PC), lithium perchlorate and PMMA, respectively. A series of samples with 0, 4, 6 and 8 wt.% TiO2 filler were investigated. The diffusion coefficients for the lithium ions and for the two solvents (EC and PC) were investigated by pfg-NMR. It was shown that the addition of filler to the gel electrolytes enhances the diffusion of the cations, while the diffusion of the solvents remains constant. Raman measurements show no significant changes in ion–ion interactions with the addition of fillers, while the ionic conductivity is seen to decrease. However, the sample with 8 wt.% TiO2 had a conductivity close to that of the unfilled sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano-particle oxide fillers including TiO2, SiO2 and Al2O3 have previously been shown to have a significant affect on the properties of both polymer and polymer gel electrolytes. In some cases, conductivity increases of one order of magnitude have been reported in crystalline PEO–base complexes. In this work, we report the effects of TiO2 and SiO2 on a poly(Li-AMPS)-based gel polyelectrolyte. Impedance spectroscopy and pfg-NMR spectroscopy indicates an increase in the number of available charge carriers with the addition of filler. An ideal amount of ceramic filler has been identified, with additional filler only saturating the system and reducing the conductivity below that of the pristine polyelectrolyte system. SEM micrographs suggest a model whereby the filler interacts readily with the sulfonate group; the surface area of the filler being an important factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High conductivity in single ion conducting polymer electrolytes is still the ultimate aim for many electrochemical devices such as secondary lithium batteries. Achieving effective ion dissociation in these cases remains a challenge since the active ion tends to remain in close proximity to the backbone charge as a result of a low degree of ion dissociation. A unique aspect of this dissociation problem in polyelectrolytes is the repulsion between the backbone charges created by dissociation. One way of enhancing ion dissociation in polyelectrolyte systems is to use copolymers in which only a fraction (<20%) of the mer units are charged and where the comonomer is itself chosen to be polar and preferably to be compatible with potential solvents. We have also found that certain dissociation enhancers based on ionic liquids or boroxine ring compounds can lead to high ionic conductivity. In the cases where an ionic liquid is used as the solvent in a polyelectrolyte gel, the viscosity of the ionic liquid and its hydrophilicity are critical to achieving high conductivity. Compounds based on the dicyanamide anion appear to be very effective ionic solvents; polyelectrolyte gels incorporating such ionic liquids exhibit conductivities as high as 10−2 S/cm at room temperature. In the case of boroxine ring dissociation enhancers, gels based on poly(lithium-2-acrylamido-2-methyl-1-propanesulfonate) and ethylene carbonate produce conductivities approaching 10−3 S/cm. This paper will discuss these approaches for achieving higher conductivity in polyelectrolyte materials and suggest future directions to ensure single ion transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have prepared polymer gel electrolytes with alkali metal ionic liquids (AMILs) that inherently contain alkali metal ions. The AMIL consisted of sulfate anion, imidazolium cation, and alkali metal cation. AMILs were mixed directly with poly(3-sulfopropyl acrylate) lithium salt or poly(2-acrylamido-2-methylpropanesulfonic acid) lithium salt to form polymer gels. The ionic conductivity of these gels decreased with increasing polymer fraction, as in general ionic liquid/polymer mixed systems. At low polymer concentrations, these gels displayed excellent ionic conductivity of 10−4 to 10−3 S cm−1 at room temperature. Gelation was found to cause little change in the 7Li diffusion coefficient of the ionic liquid, as measured by pulse-field-gradient NMR. These data strongly suggest that the lithium cation migrates in successive pathways provided by the ionic liquids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zwitterionic compounds such as those based on 1-butylimidazolium-3-(n-butanesulfonate) have previously been shown to have positive effects on the transport properties of polyelectrolytes. The addition of the zwitterion has been found to, in some cases, increase the dissociation of the lithium ion and enhance the conductivity by almost an order of magnitude. In this work, we report the effects of adding the above-mentioned zwitterion into the polyelectrolyte gel system poly(lithium methacrylate-co-N,N-dimethyl acrylamide); the anionic group being a stronger base leads to different behaviour for this copolymer compared to previous work. Polyelectrolyte gels based on dimethyl sulfoxide and polyether solvents were investigated to determine the breadth of applicability of the zwitterion in improving lithium ion transport. Impedance spectroscopy and pulse field gradient-NMR diffusion indicate an increase in the number of available charge carriers with zwitterion addition in some gel systems, however, the effect is not universal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particle-containing silica sol was synthesized by co-hydrolysis and co-condensation of two silane precursors, tetraethylorthosilicate (TEOS) and an organic silane composed of a non-hydrolyzable functional group (e.g., alkyl, flourinated alkyl, and phenyl), and used to produce superhydrophobic coatings on fabrics. it has been revealed that the non-hydrolyzable functional groups in the organic silanes have a considerable influence on the fabric surface wettability. When the functional group was long chain alkyl (C16), phenyl, or flourinated alkyl (C8), the treated surfaces were highly superhydrophobic with a water contact angle (CA) greater than 170°, and the CA value was little affected by the fabric type. The washing durability of the superhydrophobic coating was improved by introducing the third silane containg epoxide group, 3-glycidoxypropyltrimethoxsilane (GPTMS), for synthesis. Although the presence of epoxide groups in the coating slightly reduced the fabrics' superhydrophobicity, the washing durability was considerably improved when polyester and cotton fabrics were used as substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of photochromism in textiles has potential to create new opportunities to develop fancy colour-changing effects in fashionable textiles, as well as smart garments capable of protecting wearers from the effects of UV irradiation and responding to environmental changes. This book presents a coating method for achieving quick and obvious photochromic effects on wool fabrics using conventional photochromic dyes and hybrid silicas. It covers details about fabricating different types of photochromic dye-silica coatings, measuring their optical performance, assessing some physical characterisations of the coatings, and measuring the effects of the coatings on fabric performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method to synthesize conducting oxide nanoparticles with low photocatalytic activity was investigated. Initially, the preparation of amorphous ZnO-SnO2 solid solution nanoparticles was studied using a sol-gel technique. It was found that X-ray amorphous nanopowders with low photocatalytic activity were produced when the precipitates were heat treated below 500 °C. However, FT-IR data showed that the sample may not be an oxide semiconductor. A mixture of ZnO and SnO2 crystalline nanoparticles was also produced at 800 °C and found to have much reduced photoactivity than commercial ZnO nanoparticles having a similar specific surface area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO nanoparticles doped with up to 5 at% of Co and Mn were prepared using a co-precipitation method. The location of dopant ions and the effect of doping on the photocatalytic activity were investigated. The crystal structure of nanoparticles and local atomic arrangements around dopant ions were analyzed by X-ray absorption spectroscopy. The results showed that the Co ions substituted the Zn ions in the ZnO wurtzite phase structure and induced lattice shrinkage, while Mn ions were not completely incorporated in the crystal lattice. The photocatalytic activity under simulated sunlight was characterized by the decomposition of Rhodamine B dye molecules. It was revealed that Co-doping strongly reduced the photocatalytic activity but Mn-doping showed a weaker effect on the reduction of the photoactivity.