37 resultados para Signal Transduction


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Owing to their sessile nature, plants have evolved mechanisms to minimise the damaging effects of abiotic and biotic stresses. Attack by pathogenic fungi, viruses and bacterium is a major type of biotic stress. To resist infection, plants recognise invading pathogens and induce disease resistance through multiple signal transduction pathways. In addition, appropriate stimulation can cause plants to increase their resistance to future pathogen attack. We have found that exposure to non-lethal doses of UV-C (254 nm) renders a normally susceptible ecotype of Arabidopsis thaliana resistant to the biotrophic Oomycete pathogen Hyaloperonospora parasitica. The UV treatment induces an incompatible response in a dose-dependent fashion, and is still effective upon pathogen inoculation up to seven days after UV exposure. The degree of resistance diminishes with time but higher doses result in greater levels of resistance, even after seven days. Furthermore, the effect is systemic, occurring in parts of the plant that have not been irradiated. Incubation in the dark post?irradiation and prior to infection reduces the UV dose required to generate a specific level of pathogen resistance without affecting the duration of resistance. These observations, plus the inability of plants to photoreactivate UV photoproducts in the dark, strongly suggest that DNA damage induces the resistance phenotype. Currently, we are assessing the influence of DNA repair defects on UV-induced resistance, following the expression of a number of defence?related genes post-UV-C irradiation, and assessing the effect of UV in plant mutants deficient in specific signalling molecules involved in resistance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Creatine monohydrate (CrM) supplementation has been shown to increase fat-free mass and muscle power output possibly via cell swelling. Little is known about the cellular response to CrM. We investigated the effect of short-term CrM supplementation on global and targeted mRNA expression and protein content in human skeletal muscle. In a randomized, placebo-controlled, crossover, double-blind design, 12 young, healthy, nonobese men were supplemented with either a placebo (PL) or CrM (loading phase, 20 g/day x 3 days; maintenance phase, 5 g/day x 7 days) for 10 days. Following a 28-day washout period, subjects were put on the alternate supplementation for 10 days. Muscle biopsies of the vastus lateralis were obtained and were assessed for mRNA expression (cDNA microarrays + real-time PCR) and protein content (Kinetworks KPKS 1.0 Protein Kinase screen). CrM supplementation significantly increased fat-free mass, total body water, and body weight of the participants (P < 0.05). Also, CrM supplementation significantly upregulated (1.3- to 5.0-fold) the mRNA content of genes and protein content of kinases involved in osmosensing and signal transduction, cytoskeleton remodeling, protein and glycogen synthesis regulation, satellite cell proliferation and differentiation, DNA replication and repair, RNA transcription control, and cell survival. We are the first to report this large-scale gene expression in the skeletal muscle with short-term CrM supplementation, a response that suggests changes in cellular osmolarity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PRK2/PKNγ is a Rho effector and a member of the protein kinase C superfamily of serine/threonine kinases. Here, we explore the structure–function relationship between various motifs in the C-terminal half of PRK2 and its kinase activity and regulation. We report that two threonine residues at conserved phosphoacceptor position in the activation loop and the turn motif are essential for the catalytic activity of PRK2, but the phosphomimetic Asp-978 at hydrophobic motif is dispensable for kinase catalytic  competence. Moreover, the PRK2-Δ958 mutant with the turn motif truncated still interacts with 3-phosphoinositide-dependent kinase-1 (PDK-1). Thus, both the intact hydrophobic motif and the turn motif in PRK2 are dispensable for the binding of PDK-1. We also found that while the last seven amino acid residues at the C-terminus of PRK2 are not required for the activation of the kinase by RhoA in vitro, however, the extreme C-terminal segment is critical for the full activation of PRK2 by RhoA in cells in a GTP-dependent manner. Our data suggest that the extreme C-terminus of PRK2 may represent a potential drug target for effector-specific pharmacological intervention of Rho-medicated biological processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neurotrophic peptide. Here, we show that PACAP recruits Rap1 into caveolin-enriched membrane subdomains in PC12 cells and activates Rap1, nuclear ERK1/2, Elk-1 and CREB in a caveolae-dependent manner. We reveal that GSK3β is a novel modulator in PACAP signalling. PACAP induces phosphorylation of serine 9 in GSK3β, which is inhibited by silencing Rap1. Lithium and valproate promote but wortmannin and LY294002 attenuate PACAP-induced phosphorylation of both GSK3β and ERK1/2, whereas MEK inhibitor PD98059 inhibits nerve growth factor- but not PACAP-induced phosphorylation of GSK3β, suggesting that GSK3β operates downstream of Rapt 1 but upstream of ERK1/2 in PACAP signalling. Inhibition or stimulation of GSK3β results in a 2-fold increase and 6-fold decrease in PACAP-induced neurite outgrowth, respectively. These results reveal an important role of caveolae in the signal transduction of PACAP and that GSK3β is a critical regulator in PACAP-induced neuronal differentiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

From a cell signaling perspective, short-duration intense muscular work is typically associated with resistance training and linked to pathways that stimulate growth. However, brief repeated sessions of sprint or high-intensity interval exercise induce rapid phenotypic changes that resemble traditional endurance training. We tested the hypothesis that an acute session of intense intermittent cycle exercise would activate signaling cascades linked to mitochondrialbiogenesis in human skeletal muscle. Biopsies (vastus lateralis) were obtained from six young men who performed four 30-s "all out" exercise bouts interspersed with 4 min of rest (<80 kJ total work). Phosphorylation of AMP-activated protein kinase (AMPK; subunits {alpha}1 and {alpha}2) and the p38 mitogen-activated protein kinase (MAPK) was higher (P ≤ 0.05) immediately after bout 4 vs. preexercise. Peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha}(PGC-1{alpha}) mRNA was increased approximately twofold above rest after 3 h of recovery (P ≤ 0.05); however, PGC-1{alpha}protein content was unchanged. In contrast, phosphorylation of protein kinase B/Akt (Thr308 and Ser473) tended to decrease, and downstream targets linked to hypertrophy (p70 ribosomal S6 kinase and 4E binding protein 1) were unchanged after exercise and recovery. We conclude that signaling through AMPK and p38 MAPK to PGC-1{alpha} may explain in part the metabolic remodeling induced by low-volume intense interval exercise, including mitochondrial biogenesis and an increased capacity for glucose and fatty acid oxidation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The β7 integrins α4β7 and Eβ7 play key roles in forming the gut-associated lymphoid tissue, and contribute to chronic inflammation. The α4β7 integrin-mediated adhesion of activated lymphocytes is largely due to a transient increase in avidity from ligand-induced clustering of α4β7 at the cell-surface. Here, we report that L and D enantiomers of a cell-permeable peptide YDRREY encompassing residues 735-740 of the cytoplasmic tail of the β7 subunit inhibit the adhesion of T cells to β7 integrin ligands. The YDRREY peptide abrogated mucosal addressin cell adhesion molecule-1-induced clustering of α4β7 on the surface of activated T cells. A mutated form of the YDRREY peptide carrying either single or double conservative mutations at Tyr735Phe and Tyr740Phe was unable to inhibit T cell adhesion, suggesting that both tandem tyrosines are critical for activity. The YDRREY peptide was bound and phosphorylated by focal adhesion kinase and src, which may serve to sequester cytoskeletal proteins to the cytoplasmic domain of 4β7. The quasi-palindromic sequence YDRREY within the β7 cytoplasmic tail constitutes a cell adhesion regulatory domain that modulates the interaction of β7-expressing leukocytes with their endothelial and epithelial ligands. Cell-permeable peptidomimetics based on this motif have utility as anti-inflammatory reagents for the treatment of chronic inflammatory disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Calcineurin activation ameliorates the dystrophic pathology of hindlimb muscles in mdx mice and decreases their susceptibility to contraction damage. In mdx mice, the diaphragm is more severely affected than hindlimb muscles and more representative of Duchenne muscular dystrophy. The constitutively active calcineurin A transgene (CnA) was overexpressed in skeletal muscles of mdx (mdx CnA*) mice to test whether muscle morphology and function would be improved. Contractile function of diaphragm strips and extensor digitorum longus and soleus muscles from adult mdx CnA* and mdx mice was examined in vitro. Hindlimb muscles from mdx CnA* mice had a prolonged twitch time course and were more resistant to fatigue. Because of a slower phenotype and a decrease in fiber cross-sectional area, normalized force was lower in fast- and slow-twitch muscles of mdx CnA* than mdx mice. In the diaphragm, despite a slower phenotype and a 35% reduction in fiber size, normalized force was preserved. This was likely mediated by the reduction in the area of the diaphragm undergoing degeneration (i.e., mononuclear cell and connective and adipose tissue infiltration). The proportion of centrally nucleated fibers was reduced in mdx CnA* compared with mdx mice, indicative of improved myofiber viability. In hindlimb muscles of mdx mice, calcineurin activation increased expression of markers of regeneration, particularly developmental myosin heavy chain isoform and myocyte enhancer factor 2A. Thus activation of the calcineurin signal transduction pathway has potential to ameliorate the mdx pathophysiology, especially in the diaphragm, through its effects on muscle degeneration and regeneration and endurance capacity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The comparative effect of tuna oil (TO) and salmon oil (SO) on the plasma and liver lipid and fatty acid compositions in Sprague Dawley rats was investigated. The total triacylglycerol (TG) and total cholesterol (TC) concentrations in liver was significantly decreased in the TO group; TG level in liver was also significantly decreased in the SO group. The mRNA expression of HMG-CoA reductase in liver was significantly down-regulated in the TO and SO groups relative to the control group. The plasma TG and TC were decreased in TO, but not in SO; plasma low-density lipoprotein and very low-density lipoprotein levels in TO and SO were decreased compared with the control group. The total n-3 polyunsaturated fatty acid (PUFA) in plasma and liver phospholipids was significantly elevated in the TO and SO. Docosahexaenoic acid (22:6n-3) and eicosapentaenoic acid (20:5n-3) in tissues were significantly increased in the TO and SO, respectively. In this study, TO had a more beneficial effect on liver TC and plasma TG, TC, high-density lipoprotein in rats than SO. The likely mechanism for lowering liver and plasma cholesterol by n-3 PUFA is to suppress the mRNA expression of gene encoding HMG-CoA reductase responsible for cholesterol biosynthesis.

PRACTICAL APPLICATIONS

The beneficial effects of n-3 polyunsaturated fatty acids (PUFAs) from fish and fish oil on human health is derived from their role in modulating membrane lipid composition and affecting metabolic and signal-transduction pathways. In the present study, we demonstrated that n-3 PUFA, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) from tuna and salmon oils can be effectively incorporated into tissue membranes. Tuna oil rich in DHA has more beneficial effect on liver total cholesterol (TC) and plasma triglyceride, TC and HDL in rats than salmon oil, which is rich in EPA. The present data could provide information for the potential application of fish oils as components of functional food, and selected for fortification with different fish oils.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: Insulin resistance associated with obesity and diabetes is ameliorated by specific overexpression of GLUT4 in skeletal muscle. The molecular mechanisms regulating skeletal muscle GLUT4 expression remain to be elucidated. The purpose of this study was to examine these mechanisms.

Research Design and Methods and Results: Here, we report that AMP-activated protein kinase (AMPK) regulates GLUT4 transcription through the histone deacetylase (HDAC)5 transcriptional repressor. Overexpression of HDAC5 represses GLUT4 reporter gene expression, and HDAC inhibition in human primary myotubes increases endogenous GLUT4 gene expression. In vitro kinase assays, site-directed mutagenesis, and site-specific phospho-antibodies establish AMPK as an HDAC5 kinase that targets S259 and S498. Constitutively active but not dominant-negative AMPK and 5-aminoimidazole-4-carboxamide-1-β-d-ribonucleoside (AICAR) treatment in human primary myotubes results in HDAC5 phosphorylation at S259 and S498, association with 14-3-3 isoforms, and H3 acetylation. This reduces HDAC5 association with the GLUT4 promoter, as assessed through chromatin immunoprecipitation assays and HDAC5 nuclear export, concomitant with increases in GLUT4 gene expression. Gene reporter assays also confirm that the HDAC5 S259 and S498 sites are required for AICAR induction of GLUT4 transcription.

Conclusions: These data reveal a signal transduction pathway linking cellular energy charge to gene transcription directed at restoring cellular and whole-body energy balance and provide new therapeutic targets for the treatment and management of insulin resistance and type 2 diabetes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis describes the discovery, characterization, and function of a new protein, Rhotekin 2. It is a signaling protein with a significant role in resistance to cell death in human lymphocytes and therefore may be a potential new target in future treatments of immune diseases such a HIV and leukemia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cytokines are proteins that provide essential signals to blood and immune cells. The evolution of this system was determined from primitive organisms to humans and zebrafish. Analysis of zebrafish granulocyte colony-stimulating factor (GCSF) signalling revealed broad conservation of function with mammals and a novel role in white blood cell migration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Lipid rafts are currently an intensely investigated topic of cell biology. In addition to a demonstrated role in signal transduction of the host cell, lipid rafts serve as entry and exit sites for microbial pathogens and toxins, such as FimH-expressing enterobacteria, influenza virus, measles virus and cholera toxin. Furthermore, caveolae, a specialised form of lipid raft, are required for the conversion of the non-pathogenic prion protein to the pathogenic scrapie isoform.

Objectives: A number of reports have shown, directly or indirectly, that lipid rafts are important at various stages of the human immunodeficiency virus type-1 (HIV-1) replication cycle. The purpose of this paper is to provide a brief overview of the role of membrane-associated lipid rafts in cell biology, and to evaluate how HIV-1 has hijacked this cellular component to support HIV-1 replication. Special sections are devoted to discussing the role of lipid rafts in (1) the entry of HIV-1, (2) signal transduction regulation in HIV-1-infected cells, (3) the trafficking of HIV-1 proteins via lipid rafts during HIV-1 assembly; and a further section discusses the role of cholesterol in mature HIV-1.

Summary:
Like a number of other pathogens, HIV-1 has evolved to rely on the host cell lipid rafts to support its propagation during multiple stages of the HIV-1 replication cycle. This review has highlighted the importance of lipid rafts in HIV-1 replication.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

HIV-1 infection impairs a number of macrophage effector functions, thereby contributing to development of opportunistic infections and the pathogenesis of AIDS. FcγR-mediated phagocytosis by human monocyte-derived macrophages (MDM) is inhibited by HIV-1 infection in vitro, and the underlying mechanism was investigated in this study. Inhibition of phagocytosis directly correlated with the multiplicity of HIV-1 infection. Expression of surface FcγRs was unaffected by HIV-1 infection, suggesting that inhibition of phagocytosis occurred during or after receptor binding. HIV-1 infection of MDM markedly inhibited tyrosine phosphorylation of the cellular proteins, which occurs following engagement of FcγRs, suggesting a defect downstream of initial receptor activation. FcγR-mediated phagocytosis in HIV-infected MDM was associated with inhibition of phosphorylation of tyrosine kinases from two different families, Hck and Syk, defective formation of Syk complexes with other tyrosine-phosphorylated proteins, and inhibition of paxillin activation. Down-modulation of protein expression but not mRNA of the γ signaling subunit of FcγR (a docking site for Syk) was observed in HIV-infected MDM. Infection of MDM with a construct of HIV-1 in which nef was replaced with the gene for the γ signaling subunit augmented FcγR-mediated phagocytosis, suggesting that down-modulation of γ-chain protein expression in HIV-infected MDM caused the defective FcγR-mediated signaling and impairment of phagocytosis. This study is the first to demonstrate a specific alteration in phagocytosis signal transduction pathway, which provides a mechanism for the observed impaired FcγR-mediated phagocytosis in HIV-infected macrophages and contributes to the understanding of how HIV-1 impairs cell-mediated immunity leading to HIV-1 disease progression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and depression are considered to be neuro-immune disorders (Maes and Twisk, BMC Medicine 8:35, 2010). There is also evidence that depression and ME/CFS are accompanied by oxidative and nitrosative stress (O&NS) and by increased autoantibodies to a number of self-epitopes some of which have become immunogenic due to damage by O&NS. The aim of this study is to examine IgM-mediated autoimmune responses to different self-epitopes in ME/CFS versus depression. We examined serum IgM antibodies to three anchorage molecules (palmitic and myristic acid and S-farnesyl-L-cysteine); acetylcholine; and conjugated NO-modified adducts in 26 patients with major depression; 16 patients with ME/CFS, 15 with chronic fatigue; and 17 normal controls. Severity of fatigue and physio-somatic (F&S) symptoms was measured with the Fibromyalgia and Chronic Fatigue Syndrome Rating Scale. Serum IgM antibodies to the three anchorage molecules and NO-phenylalanine were significantly higher in ME/CFS than in depression. The autoimmune responses to oxidatively, but not nitrosatively, modified self-epitopes were significantly higher in ME/CFS than in depression and were associated with F&S symptoms. The autoimmune activity directed against conjugated acetylcholine did not differ significantly between ME/CFS and depression, but was greater in the patients than controls. Partially overlapping pathways, i.e. increased IgM antibodies to a multitude of neo-epitopes, underpin both ME/CFS and depression, while greater autoimmune responses directed against anchorage molecules and oxidatively modified neo-epitopes discriminate patients with ME/CFS from those with depression. These autoimmune responses directed against neoantigenic determinants may play a role in the dysregulation of key cellular functions in both disorders, e.g. intracellular signal transduction, cellular differentiation and apoptosis, but their impact may be more important in ME/CFS than in depression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrogen sulfide (H2S) has been proposed to mediate hypoxic vasoconstriction (HVC), however, other studies suggest the vasoconstrictory effect indirectly results from an oxidation product of H2S. Here we examined the relationship between H2S and O2 in isolated hagfish and lamprey vessels that exhibit profound hypoxic vasoconstriction. In myographic studies, H2S (Na2S) dose-dependently constricted dorsal aortas (DA) and efferent branchial arteries (EBA) but did not affect ventral aortas or afferent branchial arteries; effects similar to those produced by hypoxia. Sensitivity of H2S-mediated contraction in hagfish and lamprey DA was enhanced by hypoxia. HVC in hagfish DA was enhanced by the H2S precursor cysteine and inhibited by amino-oxyacetate, an inhibitor of the H2S-synthesizing enzyme, cystathionine β-synthase. HVC was unaffected by propargyl glycine, an inhibitor of cystathionine λ-lyase. Oxygen consumption (ṀO2) of hagfish DA was constant between 15 and 115 mmHg PO2 (1 mmHg=0.133 kPa), decreased when PO2 <15 mmHg, and increased after PO2 exceeded 115 mmHg. 10 μmol l–1 H2S increased and ⩾100μ mol l–1 H2S decreased ṀO2. Consistent with the effects on HVC, cysteine increased and amino-oxyacetate decreased O2. These results show that H2S is a monophasic vasoconstrictor of specific cyclostome vessels and because hagfish lack vascular NO, and vascular sensitivity to H2S was enhanced at low PO2, it is unlikely that H2S contractions are mediated by either H2S–NO interaction or an oxidation product of H2S. These experiments also provide additional support for the hypothesis that the metabolism of H2S is involved in oxygen sensing/signal transduction in vertebrate vascular smooth muscle.