24 resultados para SOLUTION-PHASE APPROACH


Relevância:

50.00% 50.00%

Publicador:

Resumo:

This chapter presents an unbalanced multi-phase optimal power flow (UMOPF) based planning approach to determine the optimum capacities of multiple distributed generation units in a distribution network. An adaptive weight particle swarm optimization algorithm is used to find the global optimum solution. To increase the efficiency of the proposed scheme, a co-simulation platform is developed. Since the proposed method is mainly based on the cost optimization, variations in loads and uncertainties within DG units are also taken into account to perform the analysis. An IEEE 123 node distribution system is used as a test distribution network which is unbalanced and multi-phase in nature, for the validation of the proposed scheme. The superiority of the proposed method is investigated through the comparisons of the results obtained that of a Genetic Algorithm based OPF method. This analysis also shows that the DG capacity planning considering annual load and generation uncertainties outperform the traditional well practised peak-load planning.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Structural investigations, i.e. solid-state (X-ray), solution (1H NMR) and gas-phase (theoretical), on molecules with the general formula MeOC(S)N(H)C6H4-4-Y: Y = H (1), NO2 (2), C(O)Me (3), Cl (4) have shown a general preference for the adoption of an E-conformation about the central C–N bond. Such a conformation allows for the formation of a dimeric hydrogen-bonded {H–N–C=S}2 synthon as the building block. In the cases of 1–3, additional C–H...O interactions give rise to the formation of tapes of varying topology. A theoretical analysis shows that the preference for the E-conformation is about the same as the crystal packing stabilisation energy and consistent with this, the compound with Y = C(O)OMe, (5), adopts a Z-conformation in the solid-state that facilitates the formation of N–H...O, C–H...O and C–H...S interactions, leading to a layer structure. Global crystal packing considerations are shown to be imperative in dictating the conformational form of molecules 1–5.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The hydrogen diffusion and phase transformation in a titanium particle were studied based on thermodynamic calculation. The mechanisms of hydrogen diffusion in different phases (alpha-Ti, beta-Ti and TiHx) were analyzed. A mobility database was developed for titanium– hydrogen system based on the experimental works on hydrogen diffusion coefficient reported in literature and the fundamental of diffusion. To implement the calculation, a commercial software package for the simulation of diffusion-controlled phase transformation was used. The hydrogen diffusion process, hydrogen distribution, phase transformation and phase growth rate during hydrogenization of a titanium particle at temperatures of 560 K, 800K and 1000K were discussed. The thermodynamics and kinetics analysis provided quantitative insight into the diffusion process and improved the understanding of diffusion mechanism and phase transformation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A highly sensitive and simple analytical method was developed for analyzing the binary mixed pesticides of prometryne and acetochlor in soil–water system by gas chromatography/mass spectrometry (GC/MS). The sample solution was first purified by C18 solid-phase extraction column, which was leached by acetone. The leachate was enriched to 1.0 mL by pressure blowing concentrator and then analyzed by GC/MS. The linear calibration curves were showed in the range of 1–15 μg/mL with a correlation coefficient of 0.9991. The average recoveries (n = 5) were between 95.3 and 115.7%, with relative standard deviations ranged from 1.71 and 7.95%. The limits of detection of Prometryne/Acetochlor were up to 0.06 and 0.17 μg/mL, respectively. This method provides a reliable approach to examine and evaluate the residues of prometryne and acetochlor in the soil–water system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A direct approach to functionalize and reduce pre-shaped graphene oxide 3D architectures is demonstrated by gamma ray irradiation in gaseous phase under analytical grade air, N2 or H2. The formation of radicals upon gamma ray irradiation is shown to lead to surface functionalization of the graphene oxide sheets. The reduction degree of graphene oxide, which can be controlled through varying the γ-ray total dose irradiation, leads to the synthesis of highly crystalline and near defect-free graphene based materials. The crystalline structure of the graphene oxide and γ-ray reduced graphene oxide was investigated by x-ray diffraction and Raman spectroscopy. The results reveal no noticeable changes in the size of sp2 graphitic structures for the range of tested gases and total exposure doses suggesting that the irradiation in gaseous phase does not damage the graphene crystalline domains. As confirmed by X-ray photoemission spectroscopy, the C/O ratio of γ-ray reduced graphene oxide is increasing from 2.37 for graphene oxide to 6.25 upon irradiation in hydrogen gas. The removal of oxygen atoms with this reduction process in hydrogen results in a sharp 400 times increase of the electrical conductivity of γ-ray reduced graphene oxide from 0.05 S cm-1 to as high as 23 S cm-1. A significant increase of the contact angle of the γ-ray reduced graphene oxide bucky-papers and weakened oxygen rich groups characteristic peaks across the Fourier transform infrared spectra further illustrate the efficacy of the γ-ray reduction process. A mechanism correlating the interaction between hydrogen radicals formed upon γ-ray irradiation of hydrogen gas and the oxygen rich groups on the surface of the graphene oxide bucky-papers is proposed, in order to contribute to the synthesis of reduced graphene materials through solution-free chemistry routes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Silk particles were produced by regenerating from silk solution, and using a milling method. In the regenerated silk particle production, two methods which are reported to render submicron silk particles were selected. Their particle sizes and structures were compared with particles of milling method already developed by us. The volume median average particle sizes (d(0.5)) of regenerated particles were much higher than what was reported previously. In contrast, milling method could produce particles with adjustable particle sizes ranging from micron to submicron level. All the milled particles had advantage of at least 15. °C higher thermal decomposition temperature than regenerated particles. They had silk II structure, and the crystallinity reduced as particle fineness increased, but remained higher than regenerated particles of similar sizes. © 2014 Elsevier B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new route to prepare nanostructured thermosets by the utilization of intermolecular hydrogen-bonding interactions is demonstrated here. In this study, competitive hydrogen-bonding-induced microphase separation (CHIPS) in epoxy resin (ER) containing an amphiphilic block copolymer poly(ε-caprolactone)-block-poly(2-vinylpyridine) (PCL-b-P2VP) is investigated for the first time. The phase separation takes place due to the disparity in the hydrogen-bonding interactions in ER/P2VP and ER/PCL pairs leading to the formation of ordered nanostructures in the ER/block copolymer blends. SAXS and TEM results indicate that the hexagonally packed cylindrical morphology of neat PCL-b-P2VP block copolymer remains but becomes a core-shell structure at 10 wt % addition of ER, and changes to regular lamellae structures at 20-50 wt % then to disordered lamellae with 60 wt % ER. Wormlike structures are obtained in the blends with 70 wt % ER, followed by a completely homogeneous phase of ER/P2VP and ER/PCL. The formation of nanostructures and changes in morphologies depend on the relative strength of hydrogen-bonding interactions between each component block copolymer and the homopolymer. This versatile method to develop nanostructured thermosets, involving competitive hydrogen-bonding interactions, could be used for the fabrication of hierarchical and functional materials.