117 resultados para Roll crushers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercial purity aluminium plate was reduced by rolling under nitrogen in 30 passes from an initial material thickness of 10 mm to a final thickness of 2 mm (80% reduction). Analysis of the microstructure showed that the material produced in this way had an ul-trafine grained microstructure. The sheet was roll formed at room temperature to a V-section using commercial roll forming equipment. Two sets of experiments were per-formed; one with a 15 mm radius in the base of the V and the other with a 5 mm radius. The performance in terms of final shape and springback is compared with the same part shape formed by V-die bending. The mechanical properties of the sheet were determined using the tensile test. It has been found that even if the total tensile elongation is close to zero and bending of the material is very limited, ultra-fine grained and low ductile sheet metals can be roll formed to simple section shapes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Roll forming of ultra-high strength steels (UHSS) and other high strength alloys is an advanced manufacturing methodology with the ability of cold forming those materials to complex three-dimensional shapes for lightweight structural applications. Due to their high strength, most of these materials have a reduced ductility which excludes conventional sheet forming methods under cold forming conditions. Roll forming is possible due to its low strains and incremental forming characteristic. Recent research investigates the development of high strength nano-structured aluminum sheet and titanium alloys, as well as their behaviour in roll forming with regard to formability, material behaviour and shape defects. The development of new materials is often limited to small scale samples due to the high preparation costs. In contrast, industrial application needs larger scale tests for validation, especially in roll forming where a minimum sheet length is required to feed the sample trough the roll forming machine. This work describes a novel technique for studying roll forming of a short length of experimental material. DP780 steel strips (500mm – 1300mm length) were welded between two mild steel carrier sheets of similar width and thickness giving an overall strip length of 2m. Roll forming trials were performed and longitudinal edge strain, bow and springback determined on the welded samples and samples formed of full length DP780 strip before and after cut off. The experimental results of this work show that this method gives a reasonable approach for predicting material behavior in roll forming transverse to the rolling direction. In contrast to that significant differences in longitudinal bow were observed between the welded sections and the sections formed of full length DP780 strip; this indicates that the applicability of this method is limited with regard to predicting longitudinal material behavior in roll forming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IF steel sheets were processed by conventional symmetric and asymmetric rolling (ASR) at ambient temperature. The asymmetry was introduced in a geometric way using differential roll diameters with a number of different ratios. The material strength was measured by tensile testing and the microstructure was analyzed by optical and transmission electron microscopy as well as electron backscatter diffraction (EBSD) analysis. Texture was also successfully measured by EBSD using large surface areas. Finite element (FE) simulations were carried out for multiple passes to obtain the strain distribution after rolling. From the FE results, the velocity gradient along selected flow lines was extracted and the evolution of the texture was simulated using polycrystal plasticity modeling. The best mechanical properties were obtained after ASR using a roll diameter ratio of 2. The textures appeared to be tilted up to 12 deg around the transverse direction, which were simulated with the FE-combined polycrystal plasticity modeling in good agreement with measurements. The simulation work revealed that the shear component introduced by ASR was about the same magnitude as the normal component of the rolling strain tensor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of annealing on the microstructure, texture, tensile properties, and R value evolution of an IF steel sheet after room-temperature symmetric and asymmetric rolling were examined. Simulations were carried out to obtain R values from the experimental textures using the viscoplastic self-consistent polycrystal plasticity model. The investigation revealed the variations in the textures due to annealing and symmetric/asymmetric rolling and showed that the R values correlate strongly with the evolution of the texture. An optimum heat treatment for the balance of strength, ductility, and deep drawability was found to be at 873 K (600 _C) for 30 minutes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Roll forming is an incremental bending process for forming metal sheet, strip or coiled stock. Although Finite Element Analysis (FEA) is a standard tool for metal forming simulation, it is only now being increasingly used for the analysis of the roll forming process. This is because of the excessive computational time due to the long strip length and the multiple numbers of stands that have to be modelled. Typically a single solid element is used through the thickness of the sheet for roll forming simulations. Recent investigations have shown that residual stresses introduced during steel processing may affect the roll forming process and therefore need to be included in roll forming simulations. These residual stresses vary in intensity through the thickness and this cannot be accounted for by using only one solid element through the material thickness, in this work a solid-shell element with an arbitrary number of integration points has been used to simulate the roll forming process. The system modelled is that of roll forming a V-channel with dual phase DP780 sheet steel. In addition, the influence of other modelling parameters, such as friction, on CPU time is further investigated. The numerical results are compared to experimental data and a good correlation has been observed. Additionally the numerical results show that the CPU time is reduced in the model without friction and that considering friction does not have a significant effect on springback prediction in the numerical analysis of the roll forming process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the Young’s modulus and the yield strength of the strip are considered in order to modify the deformation length analysis proposed by Bhattacharyya et al. New analytical equations are developed assuming an elastic-perfectly plastic material behaviour and the deformation length analysed for the simple case of roll forming a U-channel; the analytical results are verified by comparison with experimental data found in the literature. The proposed elastic-plastic deformation length is shorter than Bhattacharyya’s which is rigid-perfectly plastic. It is observed that the influence of elastic properties on the deformation length is not as significant as the plastic properties; however, the authors believe that the elastic effects become more important under conditions where a major area of the strip is under elastic deformation such as when the flange length is long.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

V-sections were roll formed from two grades of steel, and the strain on the top and bottom of the strip near the edge was measured using electrical resistance strain gauges. The channels were bent to a radius of 2 and 15 mm along the centerline. The steel strips were of mild and dual phase steel of yield strength 367 MPa and 597 MPa respectively. The longitudinal bow was measured using a 3-dimensional scanning system. The strain measurements were analysed to determine bending and mid-surface strains at the edge during forming. The peak longitudinal edge strain increased with material yield strength for both profile radii. For the 15 mm radius, the bow was larger in the dual phase steel than in the mild steel. For the 2 mm profile radius, the bow was smaller compared with the 15 mm profile radius and it was similar for both steels. It was observed that the difference between the peak longitudinal edge strain and yield strength to Youngs modulus ratio of the material is an important factor in determining longitudinal bow.