25 resultados para Rna Polymerase Ii


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The very virulent (vv) pathotype of infectious bursal disease virus (IBDV) has spread rapidly throughout Europe, Asia, and the Middle East. Although Australia is currently unaffected, there remains the potential for incursion of an exotic isolate. The aim of this study was to identify putative virulence determinants of IBDV to facilitate the development of improved diagnostic assays for detection and characterisation of vvIBDV isolates. Sequencing of Indonesian vvIBDV Tasik94 revealed a unique substitution [ A�¨S222] in the hypervariable region (HVR) of viral protein (VP) VP2, which did not appear to impinge on virulence or antigenicity. Phylogenetic analyses indicated that Tasik94 was closely related to Asian and European vvIBDV strains. Extensive alignment of deduced protein sequences across the HVR of VP2 identified residuesI242 I256 and I294 as putative markers of the vv phcnotype. Comparison of the pathology induced by mildly-virulent Australian IBDV 002/73 and Indonesian vvIBDV Tasik94, revealed that histological lesions in the spleen, thymus and bone marrow were restricted to Tasik94-infected birds, suggesting the enhanced pathogenicity of vvIBDV might be attributed to replication in non-bursal lymphoid organs. The biological significance of the VP2 HVR in virulence was assessed using recombinant viruses generated by reverse genetics. Both genomic segments of Australian IBDV 002/73, and recombinant segment A constructs in which the HVR of 002/73 was replaced with the corresponding region of either tissue culture-adapted virus or vvIBDV (Tasik94), were cloned behind T7 RNA polymerase promoter sequences. In vitro transcription/translation of each construct resulted in expression of viral proteins. Co-transfection of synthetic RNA transcripts initiated replication of both tissue culture-adapted parental and recombinant viruses, however attempts to rescue non-adapted viruses in specific-pathogen-free (SPF) chickens were unsuccessful. Nucleotide sequence variation in the HVR of VP2 was exploited for the development of a new diagnostic assay to rapidly detect exotic IBDV isolates, including vvIBDV, using reverse transcription polymerase chain reaction (RT-PCR) amplification and Bmrl restriction enzyme digestion. The assay was capable of differentiating between endemic and exotic IBDV in 96% of 105 isolates sequenced to date.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Set1 is the catalytic subunit and the central component of the evolutionarily conserved Set1 complex (Set1C) that methylates histone 3 lysine 4 (H3K4). Here we have determined protein/protein interactions within the complex and related the substructure to function. The loss of individual Set1C subunits differentially affects Set1 stability, complex integrity, global H3K4 methylation, and distribution of H3K4 methylation along active genes. The complex requires Set1, Swd1, and Swd3 for integrity, and Set1 amount is greatly reduced in the absence of the Swd1-Swd3 heterodimer. Bre2 and Sdc1 also form a heteromeric subunit, which requires the SET domain for interaction with the complex, and Sdc1 strongly interacts with itself. Inactivation of either Bre2 or Sdc1 has very similar effects. Neither is required for complex integrity, and their removal results in an increase of H3K4 mono- and dimethylation and a severe decrease of trimethylation at the 5′ end of active coding regions but a decrease of H3K4 dimethylation at the 3′ end of coding regions. Cells lacking Spp1 have a reduced amount of Set1 and retain a fraction of trimethylated H3K4, whereas cells lacking Shg1 show slightly elevated levels of both di- and trimethylation. Set1C associates with both serine 5- and serine 2-phosphorylated forms of polymerase II, indicating that the association persists to the 3′ end of transcribed genes. Taken together, our results suggest that Set1C subunits stimulate Set1 catalytic activity all along active genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The closely related pathogenic Neisseria species N. meningitidis and N. gonorrhoeae are able to respire in the absence of oxygen, using nitrite as an alternative electron acceptor. aniA (copper-containing nitrite reductase) is tightly regulated by four transcriptional regulators: FNR (fumarate and nitrate reductase), NarP, FUR (Ferric uptake regulator) and NsrR. The four regulators control expression of aniA in N. meningitidis by binding to specific and distinct regions of the promoter. We show in the present study that FUR and NarP are both required for the induction of expression of aniA in N. meningitidis, and that they bind adjacent to one another in a non-co-operative manner. Activation via FUR/NarP is dependent on their topological arrangement relative to the RNA polymerase-binding site. Analysis of the sequence of the aniA promoters from multiple N. meningitidis and N. gonorrhoeae strains indicates that there are species-specific single nucleotide polymorphisms, in regions predicted to be important for regulator binding. These sequence differences alter both the in vitro DNA binding and the promoter activation in intact cells by key activators FNR (oxygen sensor) and NarP (which is activated by nitrite in N. meningitidis). The weak relative binding of FNR to the N. gonorrhoeae aniA promoter (compared to N. meningitidis) is compensated for by a higher affinity of the gonococcal aniA promoter for NarP. Despite containing nearly identical genes for catalysing and regulating denitrification, variations in the promoter for the aniA gene appear to have been selected to enable the two pathogens to tune differentially their responses to environmental variables during the aerobic–anaerobic switch.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

RNA interference (RNAi) is a powerful, sequence specific, and long-lasting method of gene knockdown, and can be elicited by the expression of short-hairpin RNA (shRNA) molecules driven via polymerase III type 3 promoters from a DNA vector or transgene. To further develop RNAi as a tool in zebrafish, we have characterized the zebrafish U6 and H1 snRNA promoters and compared the efficiency of each of the promoters to express an shRNA and silence a reporter gene, relative to previously characterized U6 promoters from pufferfish, chicken, and mouse. Our results show that the zebrafish polymerase III promoters were capable of effective gene silencing in the zebrafish ZF4 cell line, but were ineffective in mammalian Vero cells. In contrast, mouse and chicken promoters were active in Vero but not ZF4 cells, highlighting the importance of homologous promoters to achieve effective silencing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retrotransposons have clearly molded the structure of the human genome. The reverse transcriptase coded for by long interspersed nuclear elements (LINEs) accounts for 35% of the human genome, with 8–9 x 105 copies of the most common human LINE element, L1Hs. Retrotransposons cycle through an RNA intermediate with transcription as the rate limiting step. Because various retrotransposons have been demonstrated to be induced by environmental stimuli, we investigated the response of the L1Hs promoter to various agents. L1Hs promoter activity was analyzed by transfecting an L1Hs-expressing cell line with plasmids containing one of two L1Hs promoters fused to the LacZ reporter gene. L1Hs promoter activity was then monitored with a ß-galactosidase assay. Treatment with UV light and heat shock resulted in a small increase in ß-galactosidase activity from one promoter, while treatment with tetradecanoylphorbol 13-acetate resulted in small increases in ß-galactosidase activity from both promoters. No increase in ß-galactosidase activity was observed after exposure to X-rays or hydrogen peroxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RNA interference (RNAi) is a specific and powerful tool used to manipulate gene expression and study gene function. The cytochrome P450 3A4 (CYP3A4) can metabolize more than 50% of drugs. In the present study, we investigated whether vector-expressed small interfering RNAs (siRNAs) altered the CYP3A4 expression and function using the Chinese hamster cell line (V79) overexpressing CYP3A4 (CHL-3A4). Three different siRNA oligonucleotides (3A4I, 3A4II, and 3A4III) were designed and tested for their ability to interfere with CYP3A4 gene expression. Our study demonstrated that transient transfection of CHL-3A4 cells with the 3A4III siRNAs, but not 3A4I and II, significantly reduced CYP3A4 mRNA levels by 65% and protein expression levels by 75%. All these siRNAs did not affect the expression of CYP3A5 at both mRNA and protein levels in V79 cells overexpressing CYP3A5. Transfection of CHL-3A4 cells with 3A4III siRNAs significantly diminished the cytotoxicity of two CYP3A4 substrate drugs, cyclophosphamide and ifosfamide, in CHL-3A4 cells, with the IC50 increased from 55 to 210 µM to >1000 µM. Nifedipine at 5.78, 14.44, and 28.88 µM was significantly (P < 0.01) depleted by approximately 100, 40, and 22%, respectively, in S9 fractions from CHL-3A4 cells compared with parental CHL-pIC19h cells. In addition, transfection of the CHL-3A4 cells with vectors expressing the 3A4III siRNAs almost completely inhibited CYP3A4-mediated nifedipine metabolism. This study demonstrated, for the first time, the specific suppression of CYP3A4 expression and function using vector-based RNAi technique. The use of RNAi is a promising tool for the study of cytochrome P450 family function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cordycepin (3′ deoxyadenosine) is a biologically active compound that, when incorporated during RNA synthesis in vitro, provokes chain termination due to the absence of a 3′ hydroxyl moiety. We were interested in the effects mediated by this drug in vivo and analyzed its impact on RNA metabolism of yeast. Our results support the view that cordycepin-triphosphate (CoTP) is the toxic component that is limiting cell growth through inhibition of RNA synthesis. Unexpectedly, cordycepin treatment modulated 3′ end heterogeneity of ACT1 and ASC1 mRNAs and rapidly induced extended transcripts derived from CYH2 and NEL025c loci. Moreover, cordycepin ameliorated the growth defects of poly(A) polymerase mutants and the pap1-1 mutation neutralized the effects of the drug on gene expression. Our observations are consistent with an epistatic relationship between poly(A) polymerase function and cordycepin action and suggest that a major mode of cordycepin activity reduces 3′ end formation efficiency independently of its potential to terminate RNA chain elongation. Finally, chemical-genetic profiling revealed genome-wide pathways linked to cordycepin activity and identified novel genes involved in poly(A) homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To identify genes involved in poly(A) metabolism, we screened the yeast gene deletion collection for growth defects in the presence of cordycepin (3′-deoxyadenosine), a precursor to the RNA chain terminating ATP analog cordycepin triphosphate. Δpho80 and Δpho85 strains, which have a constitutively active phosphate-response pathway, were identified as cordycepin hypersensitive. We show that inorganic polyphosphate (poly P) accumulated in these strains and that poly P is a potent inhibitor of poly(A) polymerase activity in vitro. Binding analyses of poly P and yeast Pap1p revealed an interaction with a kD in the low nanomolar range. Poly P also bound mammalian poly(A) polymerase, however, with a 10-fold higher kD compared to yeast Pap1p. Genetic tests with double mutants of Δpho80 and other genes involved in phosphate homeostasis and poly P accumulation suggest that poly P contributed to cordycepin hypersensitivity. Synergistic inhibition of mRNA synthesis through poly P-mediated inhibition of Pap1p and through cordycepin-mediated RNA chain termination may thus account for hypersensitive growth of Δpho80 and Δpho85 strains in the presence of the chain terminator. Consistent with this, a mutation in the 3′-end formation component rna14 was synthetic lethal in combination with Δpho80. Based on these observations, we suggest that binding of poly P to poly(A) polymerase negatively regulates its activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The packaging of a mature dimeric RNA genome is an essential step in human immunodeficiency virus type 1 (HIV-1) replication. We have previously shown that overexpression of a protease (PR)-inactive HIV-1 Gag-Pro-Pol precursor protein generates noninfectious virions that contain mainly monomeric RNA (M. Shehu-Xhilaga, S. M. Crowe, and J. Mak, J. Virol. 75:1834-1841, 2001). To further define the contribution of HIV-1 Gag and Gag-Pro-Pol to RNA maturation, we analyzed virion RNA dimers derived from Gag particles in the absence of Gag-Pro-Pol. Compared to wild-type (WT) dimeric RNAs, these RNA dimers have altered mobility and low stability under electrophoresis conditions, suggesting that the HIV-1 Gag precursor protein alone is not sufficient to stabilize the dimeric virion RNA structure. The inclusion of an active viral PR, without reverse transcriptase (RT) and integrase (IN), rescued the stability of the virion RNA dimers in the Gag particles but did not restore the mobility of the RNAs, suggesting that RT and IN are also required for virion RNA dimer maturation. Thin-section electron microscopy showed that viral particles deficient in RT and IN contain empty cone-shaped cores. The abnormal core structure indicates a requirement for Gag-Pro-Pol packaging during core maturation. Supplementing viral particles with either RT or IN via Vpr-RT or Vpr-IN alone did not correct the conformation of the dimer RNAs, whereas expression of both RT and IN in trans as a Vpr-RT-IN fusion restored RNA dimer conformation to that of the WT virus and also restored the electron-dense, cone-shaped virion core characteristic of WT virus. Our data suggest a role for RT-IN in RNA dimer conformation and the formation of the electron-dense viral core.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All retroviruses contain two copies of genomic RNA that are linked noncovalently. The dimeric RNA of human immunodeficiency virus type 1 (HIV-1) undergoes rearrangement during virion maturation, whereby the dimeric RNA genome assumes a more stable conformation. Previously, we have shown that the packaging of the HIV-1 polymerase (Pol) proteins reverse transcriptase (RT) and integrase (IN) is essential for the generation of the mature RNA dimer conformation. Analysis of HIV-1 mutants that are defective in processing of Pol showed that these mutant virions contained altered dimeric RNA conformation, indicating that the mature RNA dimer conformation in HIV-1 requires the correct proteolytic processing of Pol. The HIV-1 Pol proteins are multimeric in their mature enzymatically active forms; RT forms a heterodimer, and IN appears to form a homotetramer. Using RT and IN multimerization defective mutants, we have found that dimeric RNA from these mutant virions has the same stability and conformation as wild-type RNA dimers, showing that the mature enzymatically active RT and IN proteins are dispensable for the generation of mature RNA dimer conformation. This also indicated that formation of the mature RNA dimer structure occurs prior to RT or IN maturation. We have also investigated the requirement of Pol for RNA dimerization in both Mason-Pfizer monkey virus (M-PMV) and Moloney murine leukemia virus (MoMuLV) and found that in contrast to HIV-1, Pol is dispensable for RNA dimer maturation in M-PMV and MoMuLV, demonstrating that the requirement of Pol in retroviral RNA dimer maturation is not conserved among all retroviruses.