24 resultados para Reaction mechanism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple sample DNA amplification was done by using a novel rotary-linear motion polymerase chain reaction (PCR) device. A simple compact disc was used to create the stationary sample chambers which are individually temperature controlled. The PCR was performed by shuttling the samples to different temperature zones by using a combined rotary-linear movement of the disc. The device was successfully used to amplify up to 12 samples in less than 30 min with a sample volume of 5 μl. A simple spring loaded heater mechanism was introduced to enable good thermal contact between the samples and the heaters. Each of the heater temperatures are controlled by using a simple proportional–integral–derivative pulse width modulation control system. The results show a good improvement in the amplification rate and duration of the samples. The reagent volume used was reduced to nearly 25% of that used in conventional method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-crystal trigonal (t) Se nanobelts have been synthesized on a large scale by reducing SeO2 with glucose at 160 °C. Electron microscopy images show that the nanobelts are 80 nm in diameter, 25 nm in thickness, and up to several hundreds of micrometers in length. HRTEM images prove that the nanobelts are single crystals and preferentially grow along the [001] direction. The time-dependent TEM images revealed that the formation and growth of t-Se nanobelts were governed by a solid−solution−solid growth mechanism. The redox reaction directly produced amorphous (α) Se nanoparticles under hydrothermal conditions. t-Se nanobelts were formed by dissolution and recrystallization of the initial α-Se nanoparticles under the functional capping of poly(vinylpyrrolidone) (PVP). The nanobelts obtained exhibit a quantum size effect in optical properties, showing a blue shift of the band gap and direct transitions relative to the values of bulk t-Se.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Active sites and the catalytic mechanism of nitrogen-doped graphene in an oxygen reduction reaction (ORR) have been extensively studied but are still inconclusive, partly due to the lack of an experimental method that can detect the active sites. It is proposed in this report that the active sites on nitrogen-doped graphene can be determined via the examination of its chemical composition change before and after ORR. Synchrotron-based X-ray photoelectron spectroscopy analyses of three nitrogen-doped multilayer graphene samples reveal that oxygen reduction intermediate OH(ads), which should chemically attach to the active sites, remains on the carbon atoms neighboring pyridinic nitrogen after ORR. In addition, a high amount of the OH(ads) attachment after ORR corresponds to a high catalytic efficiency and vice versa. These pinpoint that the carbon atoms close to pyridinic nitrogen are the main active sites among the different nitrogen doping configurations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extent and type of financial fraud committed by listed firms in China, stock market reaction to the detection and announcement of fraud, and the association between institutional ownership and financial fraud are the subjects of this article. Using fraud data from the period between 2001 and 2011, the authors find wide occurrences of fraud and a strong negative market reaction on the announcement date, particularly in cases of serious fraud. Fraud is more likely to occur at firms that have a smaller proportion of independent directors and at poorly performing firms. Firms with higher mutual fund ownership subsequently have fewer incidences of fraud. Our results reports by the authors indicate that ownership by independent institutions, such as mutual funds, serves as an effective monitoring mechanism, deterring fraud and enhancing corporate governance in Chinese capital markets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Standard metabolic rate (SMR) and maximal metabolic rate (MMR) are fundamental measures in ecology and evolution because they set the scope within which animals can perform activities that directly affect fitness. In ectotherms, both SMR and MMR are repeatable over time when measured at a single ambient temperature (Ta). Many ectotherms encounter variable Ta from day to day and over their lifetime, yet it is currently unknown whether individual differences hold across an ecologically relevant range of Ta (i.e. thermal repeatability; RT). Moreover, it is possible that thermal sensitivity of SMR and MMR are important individual attributes, and correlated with one another, but virtually nothing is known about this at present. We measured SMR and MMR across an ecologically relevant Ta gradient (i.e. from 10 to 25 °C) in wild-caught salamanders (Plethodon albagula) and found that RT was significant in both traits. SMR and MMR were also positively correlated, resulting in a lower RT in absolute and factorial aerobic scopes (AAS and FAS). We found significant individual differences in thermal sensitivity for both SMR and MMR, but not for AAS and FAS. The intercept (at Ta = 0 °C) and the slope of the thermal reaction norms were negatively correlated; individuals with low MR at low Ta had a higher thermal sensitivity. Finally, individuals with a high thermal sensitivity for SMR also had high thermal sensitivity for MMR. Our results suggest that natural selection occurring over variable Ta may efficiently target the overall level of - and thermal sensitivity in - SMR and MMR. However, this may not be the case for metabolic scopes, as the positive correlation between SMR and MMR, in addition to their combined changes in response to Ta, yielded little individual variation in AAS and FAS. Our results support the idea that organisms with low metabolism at low Ta have a high metabolic thermal sensitivity as a compensatory mechanism to benefit in periods of warmer environmental conditions. Hence, our study reveals the importance of considering within-individual variation in metabolism, as it may represent additional sources of adaptive (co)variation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The latex dilution reaction during the tapping flow course has been well documented and associated with the facilitation of tapping latex flow. However, its underlying mechanism has not experimentally examined. The latex total solid content, osmotic potential and phloem turgor pressure change during the tapping flow course were simultaneously measured to investigate the cause of water movement during the tapping flow course. It was found that there are three different stages for the laticifer water equilibrium during the tapping flow course. The tapping-induced rapid turgor pressure drop is the cause of the first stage water influx into laticifers, while osmoregulation prevails during water exchange in the second and third stages of tapping flow. Meanwhile, aquaporin expressions were, for the first time, investigated during the tapping flow course. The rapid transcript up-regulation of HbPIP1, HbPIP2;1 and HbPIP2;3 contributes to the latex dilution reaction. However, their activity gating cannot be ruled out. Ethrel stimulation can significantly dilute the corresponding latex fractions during the tapping flow course due to its up-regulations of HbPIP1, HbPIP2;1 and HbPIP2;3. Nevertheless, the latex dilution reaction pattern for the Ethrel treated trees did not change, except for a lower degree of dilution compared with the un-treated trees. All these results suggest that both phloem turgor pressure and aquaporins are involved in the latex dilution reaction during the tapping flow course.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth mechanism and kinetics of mesoporous silica nanoparticles (MSNs) were investigated for the first time by using a synchrotron time-resolved small-angle X-ray scattering (SAXS) analysis. The synchrotron SAXS offers unsurpassed time resolution and the ability to detect structural changes of nanometer sized objects, which are beneficial for the understanding of the growth mechanism of small MSNs (∼20 nm). The Porod invariant was used to quantify the conversion of tetraethyl orthosilicate (TEOS) in silica during MSN formation, and the growth kinetics were investigated at different solution pH and temperature through calculating the scattering invariant as a function of reaction time. The growth of MSNs was found to be accelerated at high temperature and high pH, resulting in a higher rate of silica formation. Modeling SAXS data of micelles, where a well-defined electrostatic interaction is assumed, determines the size and shape of hexadecyltrimethylammonium bromide (CTAB) micelles before and after the addition of TEOS. The results suggested that the micelle size increases and the micelle shape changes from ellipsoid to spherical, which might be attributed to the solubilization of TEOS in the hydrophobic core of CTAB micelles. A new "swelling-shrinking" mechanism is proposed. The mechanism provides new insights into understanding MSN growth for the formation of functional mesoporous materials exhibiting controlled morphologies. The SAXS analyses were correlated to the structure of CTAB micelles and chemical reaction of TEOS. This study has provided critical information to an understanding of the growth kinetics and mechanism of MSNs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 A green method for the deoxygenation of graphene oxide (GO) was developed using K2CO3 as a reusable reduction agent. The size and thickness of the reduced GO are less than 1 μm and around 0.85 nm, respectively. Carbon dioxide is the only byproduct during this process. The reduction mechanism of the graphene oxide includes two reduction steps. On the one hand, ionic oxygen generated from the electrochemical reaction between hydroxyl ions and oxygen in the presence of K2CO3 reacts with carbonyl groups attached to the GO layers at 50°C. On the other hand, ionic oxygen attacks hydroxyl and epoxide groups, which become carbonyl groups and then are converted to carbon dioxide by K2CO3 at 90°C. These oxygenous groups are finally converted to CO2 from graphene layers, leading to the formation of graphene sheets. Headspace solid-phase microextraction and gas chromatography-mass spectrometry detected the existence of n-dodecanal and 4-ethylbenzoic acid cyclopentyl ester during the reduction, suggesting that oxygen functional groups on the GO layers are not only aligned, but randomly dispersed in some areas based on the proposed mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Candida albicans has become resistant to the commercially available, toxic, and expensive anti-Candida agents that are on the market. These factors force the search for new antifungal agents from natural resources. Cassia spectabilis had been traditionally employed by healers for many generations. The possible mechanisms of the C. spectabilis leaf extract were determined by potassium leakage study and the effect of the extract on the constituents of the cell wall and enzymes as well as the morphological changes on C. albicans cells were studied along with cytotoxicity assays. The cytotoxicity result indicated that the extract is nontoxic as was clearly substantiated by a half maximal inhibitory concentration (IC50) value of 59.10 μg/mL. The treated cells (C. spectabilis extract) demonstrated potassium leakage of 1039 parts per million (ppm) compared to Amphotericin B (AmpB)-treated cells with a released potassium value of 1115 ppm. The effects of the extract on the cell wall proteins illustrated that there were three major types of variations in the expression of treated cell wall proteins: the presence of new proteins, the absence of proteins, and the amount of expressed protein. The activities of two enzymes, α-glucosidase and proteinase, were determined to be significantly high, thereby not fully coinciding with the properties of the antifungal reaction triggered by C. spectabilis. The morphology of C. albicans cells treated with the C. spectabilis extract showed that the cells had abnormalities and were damaged or detached within the microcolonies. Our study verifies C. spectabilis leaf extract as an effective anti-C. albicans agent.