21 resultados para Rapid thermal annealing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple sample DNA amplification was done by using a novel rotary-linear motion polymerase chain reaction (PCR) device. A simple compact disc was used to create the stationary sample chambers which are individually temperature controlled. The PCR was performed by shuttling the samples to different temperature zones by using a combined rotary-linear movement of the disc. The device was successfully used to amplify up to 12 samples in less than 30 min with a sample volume of 5 μl. A simple spring loaded heater mechanism was introduced to enable good thermal contact between the samples and the heaters. Each of the heater temperatures are controlled by using a simple proportional–integral–derivative pulse width modulation control system. The results show a good improvement in the amplification rate and duration of the samples. The reagent volume used was reduced to nearly 25% of that used in conventional method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two distinct substructures were produced in a Ni-30Fe austenitic model alloy by different thermomechanical processing routes. The first substructure largely displayed organized, banded subgrain arrangements with alternating misorientations, resulting from the deformation at a strain just before the initiation of dynamic recrystallization (DRX). By contrast, the second substructure was more random in character and exhibited complex subgrain/cell arrangements characterized by local accumulation of misorientations, formed through DRX. During the post-deformation annealing, the latter substructure revealed a rapid disintegration of dislocation boundaries leading to the formation of dislocation-free grains within a short holding time, though the former largely preserved its characteristics till becoming replaced by growing statically recrystallized grains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By controlling the SWNT-rGO electrode composition and thickness to attain the appropriate porosity and tortuosity, the electroactive surface area is maximized while rapid diffusion of the electrolyte through the electrode is maintained. This leads to an increase in exchange current density between the electrode and electrolyte which results in enhanced thermocell performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study on the effect of material and fracture properties of phenolic composites cured with reduced thermal cycle times. These reductions were achieved using various techniques. The work highlights significant reductions in manufacturing times are possible for this group of materials and conveniently can also lead to improved properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many terrestrial ectotherms are capable of rapid colour change, yet it is unclear how these animals accommodate the multiple functions of colour, particularly camouflage, communication and thermoregulation, especially when functions require very different colours. Thermal benefits of colour change depend on an animal's absorptance of solar energy in both UV–visible (300-700 nm) and near-infrared (NIR; 700-2600 nm) wavelengths, yet colour research has focused almost exclusively on the former. Here, we show that wild-caught bearded dragon lizards (Pogona vitticeps) exhibit substantial UV–visible and NIR skin reflectance change in response to temperature for dorsal but not ventral (throat and upper chest) body regions. By contrast, lizards showed the greatest temperature-independent colour change on the beard and upper chest during social interactions and as a result of circadian colour change. Biophysical simulations of heat transfer predicted that the maximum temperature-dependent change in dorsal reflectivity could reduce the time taken to reach active body temperature by an average of 22 min per active day, saving 85 h of basking time throughout the activity season. Our results confirm that colour change may serve a thermoregulatory function, and competing thermoregulation and signalling requirements may be met by partitioning colour change to different body regions in different circumstances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultra-high strength steel sheets have been subjected to heat treatments that simulate the thermal cycles in hot-dip galvanising and galvannealing processes and evaluated with respect to their resulting mechanical properties and microstructures. The steels contained suitable contents of carbon (∼0.2%), manganese (1.2%) and chromium (0.4%) to ensure that they could be fully transformed to martensite after austenitisation followed by rapid cooling in a continuous annealing line, prior to galvanising. Different contents of vanadium (0–0.1%) and nitrogen (0.002–0.012%) were used to investigate the possible role of these microalloying elements on the strength of the tempered martensite. Vanadium, especially when in combination with a raised nitrogen content, helps to resist the effect of tempering so that a larger proportion of the initial strengthening is preserved after the galvanising cycle, giving tensile strength levels exceeding 1000 MPa. Different deoxidation practices using aluminium or silicon have also been included. These showed similar strength levels at corresponding carbon contents but the bendability of the Si-killed steel sheet was considerably superior. Microstructural examinations have been made on the annealed steels but the reason for the beneficial effect of vanadium is still not fully explained. It is concluded that microalloying with vanadium is a very promising approach in the development of corrosion-resistant ultra-high strength steel sheet products.