29 resultados para Proton halo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study characterizes BaCo0.7Fe0.2Nb0.1O3−δ (BCFN) perovskite oxide and evaluates it as a potential cathode material for proton-conducting SOFCs with a BaZr0.1Ce0.7Y0.2O3-δ (BZCY) electrolyte. A four-probe DC conductivity measurement demonstrated that BCFN has a modest electrical conductivity of 2–15 S cm−1 in air with p-type semiconducting behavior. An electrical conductivity relaxation test showed that BCFN has higher Dchem and Kchem than the well-known Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxide. In addition, it has relatively low thermal expansion coefficients (TECs) with values of 18.2 × 10−6 K−1 and 14.4 × 10−6 K−1 at temperature ranges of 30–900 °C and 30–500 °C, respectively. The phase reaction between BCFN and BZCY was investigated using powder and pellet reactions. EDX and XRD characterizations demonstrated that BCFN had lower reactivity with the BZCY electrolyte than strontium-containing perovskite oxides such as SrCo0.9Nb0.1O3-δ and Ba0.6Sr0.4Co0.9Nb0.1O3−δ. The impedance of BCFN was oxygen partial pressure dependent. Introducing water into the cathode atmosphere reduced the size of both the high-frequency and low-frequency arcs of the impedance spectra due to facilitated proton hopping. The cathode polarization resistance and overpotential at a current density of 100 mA cm−2 were 0.85 Ω cm−2 and 110 mV in dry air, which decreased to 0.43 Ω cm−2 and 52 mV, respectively, in wet air (∼3% H2O) at 650 °C. A decrease in impedance was also observed with polarization time; this was possibly caused by polarization-induced microstructure optimization. A promising peak power density of ∼585 mW cm−2 was demonstrated by an anode-supported cell with a BCFN cathode at 700 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of up to 4 mol% of the strong acids, trifluoromethane sulfonic acid (TfOH) and bis-trifluoromethanesulfonyl imide [HN(Tf) 2], to the organic ionic plastic crystal (OIPC) [Choline][DHP] has been shown to dramatically increase the ionic conductivity by up to three orders of magnitude whilst still retaining the crystalline structure of the OIPC matrix. This enhanced proton diffusivity led to a significant proton reduction reaction in the electrochemical measurements. Powder XRD and DSC thermal analyses strongly suggest that these mixtures are single phase, crystalline materials. The work here also confirms that an increase in TfOH acid concentration (8 mol% and 12 mol%) results in a higher content of the amorphous phase as previously observed for the H 3PO 4/[Choline][DHP] system. © 2012 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalyst support materials exhibit great influence on the performance and durability of proton exchange membrane (PEM) fuel cells. This minireview article summarises recent developments into carbon nanotube-based support materials for PEM fuel cells, including the membrane electrode assembly (MEA). The advantages of using CNTs to promote catalyst performance and stability, a perspective on research directions and strategies to improve fuel cell performance and durability are discussed. It is hoped that this minireview will act as a conduit for future developments in catalyst supports and MEA design for PEM fuel cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proton transport has been recognized as an essential process in many biological systems, as well as electrochemical devices including fuel cells and redox flow batteries. In the present study, we address the pressing need for solvent-free proton conducting polymer electrolytes for high-temperature PEM fuel cell applications by developing a novel all-solid polyelectrolyte membrane with a self-assembled proton-channel structure. We show that this self-assembled nanostructure endows the material with exciting ‘dry’ proton conductivity at elevated temperatures, as high as 0.3 mS cm−1 at 120 °C, making it an attractive candidate for high-temperature PEM fuel cell applications. Based on the combined investigation of solid-state NMR, FTIR and conductivity measurements, we propose that both molecular design and nano-scale structures are essential for obtaining highly conductive anhydrous proton conductors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is important to find alternative membranes to the state-of-the-art polybenzimidazole based high temperature proton exchange membranes with high proton conductivity at elevated temperature but with simple synthesis procedures. In this work, inorganic-organic nanostructured hybrid membranes are developed based on a polyethersulfone-polyvinylpyrrolidone (PES-PVP) polymeric matrix with hollow mesoporous silica (HMS), amino-functionalized hollow mesoporous silica (NH2-HMS) and amino-functionalized mesoporous silica (NH2-meso-silica). The composite membranes show a significant increase in proton conductivity and a decrease in the activation energy for proton diffusion in comparison with the phosphoric acid (H3PO4, PA) doped PES-PVP membrane. And the composite membrane with NH2-HMS shows the best performance under the conditions in this study, achieving the highest proton conductivity of 1.52 × 10-1 S cm-1 and highest peak power density of 480 mW cm-2 at 180 °C under anhydrous conditions, which is 92.7% higher than that of the PA doped PES-PVP membrane at identical conditions. Such enhancement results from the facilitated proton transportation in the ordered mesoporous channels via the hydrogen bond between the -NH2 groups and H3PO4. The high water retention capability of silica materials with a hollow structure also contributes to the decrease of the activation of proton diffusion. Consequently, the results show promising potential of the NH2-HMS based PES-PVP composite membrane for the elevated temperature proton exchange membrane fuel cells.