21 resultados para Power flow


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An empirical relationship between the hardness and uniform elongation of non-Austenitic hypoeutectoid steels has been developed. This new hardness-elongation relationship was combined with previously developed correlations of hardness and strength (yield and ultimate tensile strength) to predict the stressstrain flow curve from a single hardness test. The current study considers both power law hardening behavior and exponential hardening behavior. Reasonable agreement was observed between the experimental and predicted flow curves of a high strength, low alloy steel. Additionally, an empirical correlation of the flow strength at instability with hardness is provided. © ASM International.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new distributed multi-agent scheme for reactive power management in smart coordinated distribution networks with renewable energy sources (RESs) to enhance the dynamic voltage stability, which is mainly based on controlling distributed static synchronous compensators (DSTATCOMs). The proposed control scheme is incorporated in a multi-agent framework where the intelligent agents simultaneously coordinate with each other and represent various physical models to provide information and energy flow among different physical processes. The reactive power is estimated from the topology of distribution networks and with this information, necessary control actions are performed through the proposed proportional integral (PI) controller. The performance of the proposed scheme is evaluated on a 8-bus distribution network under various operating conditions. The performance of the proposed scheme is validated through simulation results and these results are compared to that of conventional PI-based DSTATCOM control scheme. From simulation results, it is found that the distributed MAS provides excellence performance for improving voltage profiles by managing reactive power in a smarter way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integration of solar PV and wind in to the distribution network is one of the most promising challenges of the modern power system networks to meet the growing demand of energy. Analysis of the effects of solar and wind intermittencies in the network are vital to maintain the power quality. Keeping this in view, this research paper focuses on impact analysis study of a typical power network with hybrid generation: solar PV and wind integration to quantify the level of impacts like power variation and voltage variation in the network through load flow analysis. Initially, a typical network model is developed using PSS-SINCAL and load profile analysis has been carried out based on the typical daily load profile and wind/solar profile to verify the power and voltage variations extensively in the network considering different scenarios. Results of this research analysis can be used as guidelines for utility grid to provide regulated and improved quality of energy supply by implementing appropriate planning of generation reserve and other control measures in the network

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a new agent-based distributed reactive power management scheme is proposed to improve the voltage stability of energy distribution systems with distributed generation units. Three types of agents – distribution system agent, estimator agent, and control agent are developed within the multi-agent framework. The agents simultaneously coordinated their activities through the online information and energy flow. The overall achievement of the proposed scheme depends on the coordination between two tasks – (i) estimation of reactive power using voltage variation formula and (ii) necessary control actions to provide the estimated reactive power to the distribution networks through the distributed static synchronous compensators. A linear quadratic regulator with a proportional integrator is designed for the control agent in order to control the reactive component of the current and the DC voltage of the compensators. The performance of the proposed scheme is tested on a 10-bus power distribution network under various scenarios. The effectiveness is validated by comparing the proposed approach to the conventional proportional integral control approach. It is found that, the agent-based scheme provides excellent robust performance under various operating conditions of the power distribution network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a renewable and non-polluting energy source, wind is used to produce electricity via large-diameter horizontal or vertical axis wind turbines. Such large wind turbines have been well designed and widely applied in industry. However, little attention has been paid to the design and development of miniature wind energy harvesters, which have great potential to be applied to the HVAC (heating, ventilating and air conditions) ventilation exhaust systems and household personal properties. In this work, 10 air-driven electromagnetic energy harvesters are fabricated using 3D printing technology. Parametric measurements are then conducted to study the effects of (1) the blade number, (2) its geometric size, (3) aspect ratio, presence or absence of (4) solid central shaft, (5) end plates, and (6) blade orientation. The maximum electrical power is 0.305 W. To demonstrate its practical application, the electricity generated is used to power 4 LED (light-emitting diode) lights. The maximum overall efficiency ηmax is approximately 6.59%. The cut-in and minimum operating Reynolds numbers are measured. The present study reveals that the 3D printed miniature energy harvesters provide a more efficient platform for harnessing ‘wind power’.