19 resultados para Polynomials.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have demonstrated the importance of maximal Torque-Cadence (T-C) and Power-Cadence (P-C) relationships, for the performances of world class track sprint cyclists. If these relationships are affected by the function of the lower limb muscles, the ability of cyclists to generate torque and power at a given cadence may vary depending on their riding position. During sprint events (individual and team sprints and Keirin), cyclists alternate between standing and seated positions. The T-C and P-C relationships may change with the position adopted by the cyclists. PURPOSE: The aim of this study was to evaluate the necessity to define position specific maximal T-C and P-C relationships. METHODS: Eight junior elite track cyclists from the National Talent Identification squad undertook two inertial-load tests that consisted of four all-out sprints each. One test was undertaken at the velodrome in a standing position on a carbon fibre track bike, and the other test was completed in a seated position on an air-braked stationary ergometer. A calibrated SRM power meter interfaced to a custom instrumentation package was used for all mechanical measurements. Maximal T-C and P-C relationships were analysed to calculate maximal Torque (T0), maximal Power (Pmax) and optimal pedalling cadence (PCopt). RESULTS: All individual T-C and P-C relationships obtained for both body positions were fitted by linear regressions (r2=0.95 ± 0.02) and second order polynomials (r2=0.96 ± 0.01), respectively. T0 was higher (209 ± 2.2N.m vs. 177.0 ± 3.9N.m, p<0.05), PCopt was lower (112.5 ± 11.4rpm vs. 120.1 ± 6.7rpm, p<0.05), and Pmax was higher (1261 ± 235W vs. 1076 ± 183W, p<0.05) in standing position compared to seated position. CONCLUSION: Analysis of track sprint cyclists’ performances can be improved by the determination of position-specific maximal T-C and P-C relationships .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is devoted to a combinatorial problem for incidence semirings, which can be viewed as sets of polynomials over graphs, where the edges are the unknowns and the coefficients are taken from a semiring. The construction of incidence rings is very well known and has many useful applications. The present article is devoted to a novel application of the more general incidence semirings. Recent research on data mining has motivated the investigation of the sets of centroids that have largest weights in semiring constructions. These sets are valuable for the design of centroid-based classification systems, or classifiers, as well as for the design of multiple classifiers combining several individual classifiers. Our article gives a complete description of all sets of centroids with the largest weight in incidence semirings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wireless mesh networks (WMNs) have the ability to integrate with other networks while providing a fast and cost-saving deployment. The network security is one of important challenge problems in this kind of networks. This paper is focused on key management between mesh and sensor networks. We propose an efficient key pre-distribution scheme based on two polynomials in wireless mesh networks by employing the nature of heterogeneity. Our scheme realizes the property of bloom filters, i.e., neighbor nodes can discover their shared keys but have no knowledge on the different keys possessed by the other node, without the probability of false positive. The analysis presented in this paper shows that our scheme has the ability to establish three different security level keys and achieves the property of self adaptive security for sensor networks with acceptable computation and communication consumption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With prevalent attacks in communication, sharing a secret between communicating parties is an ongoing challenge. Moreover, it is important to integrate quantum solutions with classical secret sharing schemes with low computational cost for the real world use. This paper proposes a novel hybrid threshold adaptable quantum secret sharing scheme, using an m-bonacci orbital angular momentum (OAM) pump, Lagrange interpolation polynomials, and reverse Huffman-Fibonacci-tree coding. To be exact, we employ entangled states prepared by m-bonacci sequences to detect eavesdropping. Meanwhile, we encode m-bonacci sequences in Lagrange interpolation polynomials to generate the shares of a secret with reverse Huffman-Fibonacci-tree coding. The advantages of the proposed scheme is that it can detect eavesdropping without joint quantum operations, and permits secret sharing for an arbitrary but no less than threshold-value number of classical participants with much lower bandwidth. Also, in comparison with existing quantum secret sharing schemes, it still works when there are dynamic changes, such as the unavailability of some quantum channel, the arrival of new participants and the departure of participants. Finally, we provide security analysis of the new hybrid quantum secret sharing scheme and discuss its useful features for modern applications.