18 resultados para Photoinduced Birefringence


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photoinduced shape conversion of silver nanoparticles was realized using sunlight. The silver seeds were transformed to silver nanoprisms under sunlight when the concentration of citrate was low (≤5.0×10-4M). Nevertheless, sunlight converted the obtained silver nanoprisms to silver nanodecahedrons when the concentration of citrate in reaction system was increased. It was found that the ultraviolet light from sunlight played a vital role in the shape conversion from nanoprism to nanodecahedron. Lighting power density did not influence the shape conversion except for reaction rate. Besides, the silver nanodecahedrons were synthesized in the mixed solution of AgNO3 and citrate in absence of silver seeds through irradiation by simulated sunlight. The mechanism on the sunlight induced synthesis of silver nanoparticles was discussed. Anisotropic silver nanoparticles including nanoprisms and nanodecahedrons were obtained through controlling the citrate concentration and irradiation time by sunlight from green light source.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to spatiotemporally identify the formation of specific anionic species, or track changes in their concentration inside living systems, is of critical importance in deciphering their exact biological roles and effects. The development of probes (also called bioimaging agents and intracellular sensors) to achieve this goal has become a rapidly growing branch of supramolecular chemistry. In this critical review the challenges specific to the task are identified and for a select range of small anions of environmental and biological relevance (fluoride, chloride, iodide, cyanide, pyrophosphate, bicarbonate, hydrosulphide, peroxynitrite, hypochlorite and hypobromite) a comprehensive overview of the currently available in vitro and in vivo probes is provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface of wool fabrics was coated with TiO2 and TiO2-based nanocomposite colloids and the impact of this coating on the photostability of wool was investigated. TiO2 along with TiO2/Metal and TiO2/Metal/SiO2 sols were synthesized through a low-temperature sol-gel method and applied to fabrics. Composite colloids were synthesized through integrating the silica and three noble metals of silver (Ag), gold (Au) and platinum (Pt) into the synthesis process of sols. Four different molar ratios of Metal to TiO2 (0.01%, 0.1%, 0.5% and 1%) were used to elucidate the role of metal type and amount on the obtained features. Photostability and UV protection features of fabrics were evaluated through measuring the photo-induced chemiluminescence (PICL), photoyellowing rate and ultraviolet protection factor (UPF) of fabrics. PICL and photoyellowing tests were carried out under UVA and UVC light sources, respectively. PICL profiles demonstrated that the presence of pure and modified TiO2 nanoparticles on fabrics reduced the intensity of PICL peak indicating a lower amount of polymer free radicals in coated wool, compared to that of pristine fabric. Moreover, a higher PICL peak intensity as well as photoyellowing rate was observed on fabrics coated with modified colloids in comparison with pure TiO2. The surface morphology of fabrics was further characterized using FESEM images.