20 resultados para Phenol


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to determine whether 5-HT2A receptors mediate cardiovascular and thermogenic responses to acute psychological stresses. For this purpose, adult male Wistar hooded rats instrumented for telemetric recordings of either electrocardiogram (ECG) (n=12) or arterial pressure (n=12) were subjected, on different days, to four 15-min episodes of social defeat. Prior to stress, animals received s.c. injection of the selective 5-HT2A receptor antagonist SR-46349B (trans-4-((3Z)3-[(2-dimethylaminoethyl)oxyimino]-3-(2-fluorophenyl)propen-1-yl)-phenol, hemifumarate) (at doses of 0.3, 1.0 and 3.0 mg/kg) or vehicle. The drug had no effect on basal heart rate or heart rate variability indexes, arterial pressure, and core body temperature. Social defeat elicited significant and substantial tachycardic (347±7 to 500±7 bpm), pressor (77±4 to 97±4 mm Hg) and hyperthermic (37.0±0.3 to 38.5±0.1 °C) responses. Blockade of 5-HT2A receptors, at all doses of the antagonist, completely prevented stress-induced hyperthermia. In contrast, stress-induced cardiovascular responses were not affected by the blockade (except small reduction of tachycardia by the highest dose of the drug). We conclude that in rats, 5-HT2A receptors mediate stress-induced hyperthermic responses, but are not involved in the genesis of stress-induced rises in heart rate or arterial pressure, and do not participate in cardiovascular control at rest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The frontal analysis method was used to measure the adsorption isotherms of phenol, 4-chlorophenol, p-cresol, 4-methoxyphenol and caffeine on a series of columns packed with home-made alkyl-phenyl bonded silica particles. These ligands consist of a phenyl ring tethered to the silica support via a carbon chain of length ranging from 0 to 4 atoms. The adsorption isotherm models that fit best to the data account for solute–solute interactions that are likely caused by π–π interactions occurring between aromatic compounds and the phenyl group of the ligand. These interactions are the dominant factor responsible for the separation of low molecular weight aromatic compounds on these phenyl-type stationary phases. The saturation capacities depend on whether the spacer of the ligands have an even or an odd number of carbon atoms, with the even alkyl chain lengths having a greater saturation capacity than the odd alkyl chain lengths. The trends in the adsorption equilibrium constant are also significantly different for the even and the odd chain length ligands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microphase separation through competitive hydrogen bonding interactions in ABC/D triblock copolymer/ homopolymer complexes is studied for the first time. This study investigated self-assembled nanostructures that are obtained in the bulk, by the complexation of a semicrystalline polystyrene-block-poly(4-vinylpyridine)-block-poly(ethylene oxide) (SVPEO) triblock copolymer with a poly(4-vinyl phenol) (PVPh) homopolymer in tetrahydrofuran (THF). In these complexes, microphase separation takes place due to the disparity in intermolecular interactions among PVPh/P4VP and PVPh/PEO pairs. At low PVPh concentrations, PEO interacts relatively weakly with PVPh, whereas in the complexes containing more than 30 wt% PVPh, the PEO block interacts considerably with PVPh, leading to the formation of composition-dependent nanostructures. SAXS and TEM results indicate that the cylindrical morphology of a neat SVPEO triblock copolymer changes into lamellae structures at 20 wt% of PVPh then to disordered lamellae with 40 wt% PVPh. Wormlike structures are obtained in the complex with 50 wt%PVPh, followed by disordered spherical microdomains with size in the order of 40–50 nm in the complexes with 60–80 wt% PVPh. Moreover, when the content of PVPh increases to 80 wt%, the complexes show a completely homogenous phase of PVPh/P4VP and PVPh/PEO with phase separated spherical PS domains. The fractional crystallization behavior in SVPEO and complexes at lower PVPh content was also examined. A structural model was proposed to explain the microphase separation and self-assembled morphologies of these complexes based on the experimental results obtained. The formation of nanostructures and changes in morphologies depend on the relative strength of hydrogen bonding interactions between each component block of the copolymer and the homopolymer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To achieve the greatest peak capacity in two-dimensional high performance liquid chromatography (2D-HPLC) a gradient should be operated in both separation dimensions. However, it is known that when an injection solvent that is stronger than the initial mobile phase composition is deleterious to peak performance, thus causing problems when cutting a portion from one gradient into another. This was overcome when coupling hydrophilic interaction with reversed phase chromatography by introducing a counter gradient that changed the solvent strength of the second dimension injection. It was found that an injection solvent composition of 20% acetonitrile in water gave acceptable results in one-dimensional simulations with an initial composition of 5% acetonitrile. When this was transferred to a 2D-HPLC separation of standards it was found that a marked improvement in peak shape was gained for the moderately retained analytes (phenol and dimethyl phthalate), some improvement for the weakly retained caffeine and very little change for the strongly retained n-propylbenzene and anthracene which already displayed good chromatographic profiles. This effect was transferred when applied to a 2D-HPLC separation of a coffee extract where the indecipherable retention profile was transformed to a successful application multidimensional chromatography with peaks occupying 71% of the separation space according to the geometric approach to factor analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A magnetic resin based on cardanol, furfural, and curaua fibers was prepared and characterized. The material could be used in oil-spill cleanup processes, because of its aromatic/aliphatic balance. The resin was prepared through bulk polycondensation of cardanol and furfural in the presence of curaua fibers and maghemite nanoparticles. Hydrophobicity of the curaua fibers was improved by acetylation, increasing the oil-absorbing capability of the composites. The obtained magnetic composites were studied by Fourier-transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis. Degree of cure, magnetic force, and oil-removal capability tests were also performed. The results show that the composites possess an elevated cure degree in addition to a considerable magnetic force. The materials exhibit a good oil removal capability in the presence of a magnetic field, which is improved by the use of acetylated curaua. In the best case, the composite filled with maghemite and curaua can remove 12 parts of oil from water.