18 resultados para Patch Antenna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1.Habitat loss and associated fragmentation are major drivers of biodiversity decline, and understanding how they affect population processes (e.g. dispersal) is an important conservation goal. In a large-scale test employing 10 × 10 km units of replication, three species of Australian birds, the fuscous honeyeater, yellow-tufted honeyeater and white-plumed honeyeater, responded differently to fragmentation. The fuscous and yellow-tufted honeyeaters are ‘decliners’ that disappeared from suitable habitat in landscapes where levels of tree-cover fell below critical thresholds of 17 and 8%, respectively. The white-plumed honeyeater is a ‘tolerant’ species whose likelihood of occurrence in suitable habitat was independent of landscape-level tree-cover. 2.To determine whether the absence of the two decliner species in low tree-cover landscapes can be explained by reduced genetic connectivity, we looked for signatures of reduced mobility and gene flow in response to fragmentation across agricultural landscapes in the Box-Ironbark region of north-central Victoria, Australia. 3.We compared patterns of genetic diversity and population structure at the regional scale and across twelve 100 km2 landscapes with different tree-cover extents. We used genetic data to test landscape models predicting reduced dispersal through the agricultural matrix. We tested for evidence of sex-biased dispersal and sex-specific responses to fragmentation. 4.Reduced connectivity may have contributed to the disappearance of the yellow-tufted honey-eater from low tree-cover landscapes, as evidenced by male bias and increased relatedness among males in low tree-cover landscapes and signals of reduced gene flow and mobility through the agricultural matrix. We found no evidence for negative effects of fragmentation on gene flow in the other decliner, the fuscous honeyeater, suggesting that undetected pressures act on this species. As expected, there was no evidence for decreased movement through fragmented landscapes for the tolerant white-plumed honeyeater. 5.We demonstrated effects of habitat loss and fragmentation (stronger patterns of genetic differentiation, increased relatedness among males) on the yellow-tufted honeyeater above the threshold at which probability of occurrence dropped. Increasing extent and structural connectivity of habitat should be an appropriate management action for this species and other relatively sedentary woodland specialist species for which it can be taken as representative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For dioecious animals, reproductive success typically involves an exchange between the sexes of signals that provide information about mate location and quality. Typically, the elaborate, secondary sexual ornaments of males signal their quality, while females may signal their location and receptivity. In theory, the receptor structures that receive the latter signals may also become elaborate or enlarged in a way that ultimately functions to enhance mating success through improved mate location. The large, elaborate antennae of many male moths are one such sensory structure, and eye size may also be important in diurnal moths. Investment in these traits may be costly, resulting in trade-offs among different traits associated with mate location. For polyandrous species, such trade-offs may also include traits associated with paternity success, such as larger testes. Conversely, we would not expect this to be the case for monandrous species, where sperm competition is unlikely. We investigated these ideas by evaluating the relationship between investment in sensory structures (antennae, eye), testis, and a putative warning signal (orange hindwing patch) in field-caught males of the monandrous diurnal painted apple moth Teia anartoides (Lepidoptera: Lymantriidae) in southeastern Australia. As predicted for a monandrous species, we found no evidence that male moths with larger sensory structures had reduced investment in testis size. However, contrary to expectation, investment in sensory structures was correlated: males with relatively larger antennae also had relatively larger eyes. Intriguingly, also, the size of male orange hindwing patches was positively correlated with testis size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patch size, isolation and quality are key factors influencing species persistence in fragmented landscapes. However, we still lack a detailed understanding of how these variables exert their effects on populations inhabiting fragmented landscapes. At which ecological scale do they have an effect (e.g., individuals versus populations) and, on which demographic parameters? Answering these questions will identify the mechanisms that underlie population turnover rather than solely predicting it based on proxies (e.g., presence/absence data). We report the results of a large-scale, three-year study focused on the relative effects of patch size, isolation and quality on individuals and populations of an arboreal rodent, the hazel dormouse (Muscardinus avellanarius). We examined 30 sites nested within three landscapes characterized by contrasting levels of habitat amount and habitat quality (food resources). We quantified the effects of patch size and quality on the response of individuals (survival and litter size) and populations (density and colonization/extinction dynamics). We identified demographic mechanisms which led to population turnover. Habitat quality positively affected survival (not litter size) and population density (measured through an index). We infer that the decline in survival due to patch quality reduced patch recolonization rather than increasing extinction, while extinction was mainly affected by patch size. Our findings suggest that the effect of patch quality on individual and population parameters was constrained by the physical structure of the surrounding landscapes. At the same time, our results highlight the importance of preserving habitat quality to help the persistence of entire systems of patches.